
4144 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

LSync: A Universal Timeline-Synchronizing
Solution for Live Streaming

Fan Dang , Member, IEEE, ACM, Yifan Xu , Student Member, IEEE, Rongwu Xu ,
Xinlei Chen , Member, IEEE, and Yunhao Liu, Fellow, IEEE, ACM

Abstract— The widespread use of intelligent devices and the
development of mobile networks have led to the increasing pop-
ularity of live-streaming services worldwide. In addition to video
and audio transmissions, a wide range of media content is also
sent to audiences, such as player statistics for sports streams and
subtitles for live news. However, due to the diverse transmission
process between live streams and other media content, synchro-
nizing them has become a significant challenge. Unfortunately,
existing commercial solutions are not universal, requiring specific
server cloud services or CDNs and limiting users’ free choices
of web infrastructures. To address this issue, we propose a
lightweight and universal solution called LSync, which inserts
a series of audio signals containing metadata into the original
audio stream. Based on the embedded metadata, a well-designed
timeline-synchronizing solution helps to synchronize the informa-
tion stream to the live stream. It brings no modifications to the
original live broadcast process and thus fits prevalent live broad-
cast infrastructures. Evaluations show that the proposed solution
reduces the signal processing delay to around 5% of an audio
buffer length in mobile phones and ensures real-time signal pro-
cessing. It achieves a channel utilization of more than 150 bps/kHz
in a specific configuration, greatly outperforming recent works.
Furthermore, the proposed synchronization mechanism reaches a
precision of 24.84 ms on average, which matches people’s viewing
habits.

Index Terms— Live streaming, synchronization, chirp
signal.

Manuscript received 24 March 2023; revised 23 November 2023 and
13 May 2024; accepted 24 May 2024; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor L. Cai. Date of publication 11 June 2024;
date of current version 17 October 2024. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2021YFB2900100, in part by the Natural Science Foundation of China
under Grant 62302259, in part by Guangdong Innovative and Entrepreneurial
Research Team Program under Grant 2021ZT09L197, and in part by Meituan.
An earlier version of this paper was presented in part at the IEEE International
Conference on Computer Communications (IEEE INFOCOM 2022) [DOI:
10.1109/INFOCOM48880.2022.9796933]. (Fan Dang and Yifan Xu are co-
first authors.) (Corresponding author: Yunhao Liu.)

Fan Dang and Yunhao Liu are with the Global Innovation
Exchange, Tsinghua University, Beijing 100084, China (e-mail:
dangfan@tsinghua.edu.cn; yunhaoliu@gmail.com).

Yifan Xu is with the School of Software, Tsinghua University, Beijing
100084, China (e-mail: xuyifan20@mails.tsinghua.edu.cn).

Rongwu Xu is with the Institute for Interdisciplinary Informa-
tion Sciences, Tsinghua University, Beijing 100084, China (e-mail:
xrw22@mails.tsinghua.edu.cn).

Xinlei Chen is with the Peng Cheng Laboratory and the RISC-V
International Open Source Laboratory, Shenzhen International
Graduate School, Shenzhen, Guangdong 518000, China (e-mail:
chen.xinlei@sz.tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2024.3408147

I. INTRODUCTION

THE proliferation of mobile networks [1], [2] has led to a
surge in the popularity of live streaming. Streamers use

cameras and microphones to record live events, which are then
uploaded to streaming servers and made available on websites
for viewers to watch on their computers or mobile devices
anytime, anywhere. The COVID-19 pandemic has kept many
people at home in recent years, contributing to the growing
popularity of live streaming. Live commerce has emerged as a
way for businesses to interact with audiences and sell products
online, while live education provides teachers and students
with a new platform for communication outside the classroom.

With the increasing use of live streaming for various
applications, more media content, such as slides, quizzes,
and subtitles, is being transmitted to audiences through live-
streaming services. Typical examples include updating player
statistics for a sports stream, displaying product details for
a live shopping stream, sharing slides with students for a
live education stream, and sending questions for a live quiz
stream. Synchronization between the video stream and all
other content is crucial. Take Rain Classroom [3], a widely
used online education platform, for instance. Teachers can
send slides and quizzes to students while hosting the live
stream. If the page turn of the slides is inconsistent with
the video, students may not follow the lesson. Similarly,
in HQ Trivia [4], a live trivia video game, an out-of-sync
time between the live stream and the quiz would significantly
impact the user experience.

Unfortunately, unsynchronization between live streams and
other media content is a common problem, caused by the
use of different protocols and network channels (i.e., the
streaming channel and the information channel) with varying
transmission delays. Additionally, the encoding, transcoding,
and distribution processes introduce additional delays [5], [6].

Several solutions have been proposed to address the syn-
chronization issue. The simplest solution is to add a fixed time
delay to the information channel. However, this approach is
difficult to estimate and network fluctuations weaken its effec-
tiveness. Amazon IVS makes use of ID3 [7] timed metadata
to enable users to transmit custom data within a live stream
at specific time intervals [8]. However, based on our exper-
iments, we observed a synchronization error that exceeded

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9949-6987
https://orcid.org/0009-0005-2706-0972
https://orcid.org/0009-0000-8179-7354
https://orcid.org/0000-0001-8271-5023


DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4145

400 ms, which is noticeable to the audience. Our goal is to
achieve a much higher level of synchronization. Alibaba Cloud
offers a solution that involves the insertion of Supplemental
Enhancement Information (SEI) frames containing informa-
tion during the H.264 encoding process for video streams [9].
As a result, the information is inherently synchronized with
the live stream, leading to minimal synchronization errors
on the viewer’s end during stream decoding. However, it is
worth noting that the SEI interpolation approach becomes less
reliable when video frame losses occur. The primary drawback
of these commercial solutions is their lack of versatility. For
instance, Amazon IVS only supports HLS stream playback for
the most widely used live-streaming protocols. On the other
hand, Alibaba Cloud lacks support for DASH. For streamers,
Alibaba Cloud requires the use of a specific, modified Open
Broadcaster Software (OBS) Studio for SEI frame embedding
or the development of a custom streamer application based
on their provided SDK. Additionally, users do not have the
freedom to choose their cloud service providers and may incur
additional costs when using these commercial solutions instead
of open-source or standard public cloud solutions.

This paper presents LSync, a universal method to achieve
timeline-synchronization for live streaming that is compati-
ble with various CDN platforms and mainstream streaming
techniques. The key idea of LSync is to insert modulated
audio signals with metadata into the original audio stream that
can be demodulated by the audience to aid synchronization.
Periodically embedded timestamps serve as a critical tool for
evaluating the latency of live streams. By attaching timestamps
to events within the information stream before transmission
and once again upon receipt, we can easily measure the delay
these events experience. The difference between the latency of
the live stream and that of the events within the information
stream provides us with a time offset. This offset dictates the
waiting period before the events are displayed on the viewer’s
end, ensuring synchronization with the live stream. To manage
the impact of network fluctuations on live stream latency as
well as the possible loss of embedded metadata, we incorpo-
rate historical latency records. By calculating the exponential
moving average of these records, we can effectively handle
latency variations, ensuring a more stable and synchronized
streaming experience. In contrast to the SEI insertion method,
which attaches information directly to the live stream, our
approach involves periodically embedding timestamps into the
audio stream. This ensures that the information transmission
remains on its designated channel, and its transmission relia-
bility is upheld through its specific protocols. To ensure good
synchronization performance and user experience quality, the
proposed synchronization scheme must meet the following
requirements: 1) the inserted modulated audio signals must
not interfere with the original audio, 2) the inserted modulated
audio signals must not be cut off by the Advanced Audio
Coding (AAC) encoder, 3) the inserted modulated audio
signals must resist interference and be demodulated under a
low signal-to-noise ratio (SNR) on the audience side, and 4)
the demodulation and synchronization process on the audience
side should be real-time.

Fig. 1. System architecture overview. On the streamer side, LSync peri-
odically adds modulated audio signals with metadata into the original audio
stream. The stream is then encoded, transcoded, and transmitted over the
network before being decoded by the web browser on the client side. Once
a mixed audio signal is identified, the metadata is extracted from it and the
audio stream passes through a filter before playing.

To understand how LSync works, we provide a brief
overview of the process at a high level (see Fig. 1). LSync
periodically inserts modulated audio signals containing meta-
data to aid synchronization into the original audio stream on
the streamer side. After modulation, the stream is encoded,
transcoded, transmitted over the network, and finally decoded
by the web browser on the audience side. Before the stream is
played, the mixed audio signal is identified, and the embedded
metadata is extracted for stream delay estimation and timeline
synchronization. Finally, the inserted signal is filtered out from
the audio stream to ensure not disturbing audiences.

To meet the abovementioned requirements, we design our
synchronization scheme as follows. Firstly, to avoid the
inserted modulated data from being cut off by the AAC
encoder and prevent it from interweaving with the original
audio, we select carrier frequencies between 14 kHz and
15 kHz. This approach marks a substantial departure from
previous research methods of hidden acoustic communication,
which relied on near-ultrasound frequencies exceeding 17 kHz
for data embedding [10], [11], [12], [13], [14]. Our experi-
ments indicate that such high-frequency acoustic signals would
be filtered out by a standard AAC encoder commonly used
in live broadcast software. Secondly, to resist interference
and enable easy demodulation under a low SNR, we use a
chirp spread spectrum (CSS)-based method for modulation.
CSS allows us to keep the power of embedded signals low,
ensuring successful data recovery during signal analysis and
easy suppression of disturbing signals. Lastly, to achieve real-
time processing on the audience side, we design an efficient
algorithm that performs the fast Fourier transform (FFT) just
once with a little more calculation in each chirp-length time
window to locate and synchronize data packets and decode
data, ensuring real-time signal processing.

The contributions of this paper are threefold.
• We introduce a lightweight and universal synchronizing

framework that requires no modification to traditional



4146 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

live-streaming infrastructure and can be applied to multiple
streaming protocols on both desktop and mobile devices.

• We propose embedding metadata into acoustic CSS signals,
which not only bring no interference to audiences but are
also easy to detect and demodulate for synchronization.

• We implement our system, LSync, on various kinds of
devices and conduct extensive experiments to evaluate its
performance. Our results show that the audio signal process
is fast and real-time, taking up less than 6% on average
of the audio buffer length among all tested devices and
the longest processing delay is less than a single buffer.
In addition, LSync provides a data rate of 156.25 bps at best,
outperforming recent works. Furthermore, the proposed
synchronization mechanism reaches a precision of 24.83 ms
on average, that fits people’s viewing habits. In the presence
of substantial network congestion, with more than 83% of
the available bandwidth allocated to other applications, or in
cases of severe signal interference, where the power of the
embedded signal falls below −65 dB, LSync may encounter
a performance deterioration. Nonetheless, it continues to
function effectively unless the bandwidth is entirely sat-
urated or the power of the embedded signal decreases to
−80 dB.
The rest of the paper is organized as follows. In Section II,

we review the previous work and briefly evaluate the per-
formance. In Section III, we analyze several factors that
influence our choice of acoustic channels and signal mod-
ulation. Section IV presents the CSS technique and how
we leverage it to design inserted packets. We introduce an
algorithm for packet synchronization and demodulation in
Section V and illustrate the timeline-synchronization mech-
anism in Section VI. In Section VII, we evaluate the
performance of the proposed system through extensive exper-
iments. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

The mechanism we propose falls within the realm of
hidden channel communication. Many researchers have well
studied hidden acoustic or visual channel communications to
provide helpful side information to audiences [15], [16]. As for
streaming synchronization, several commercial solutions have
been proposed as well. In addition, real-time communication
protocols for the web like WebRTC emerge, enabling nearly
real-time data transmission for users. We discuss them from
the following four aspects.

A. Hidden Visual Channel Communication

Inframe++ [17] leverages the spatial-temporal flicker-
fusion property of the human visual system and the fast
frame rate of the modern display to embed data onto video
content through complementary frame composition. It achieves
a 150 kbps to 240 kbps data rate at 120 fps over a 24’
LCD monitor with one data frame per 12 display frames, but
noticeable flicker remains. Hilight [18] encodes bits into the
pixel translucency change, which supports a low bit rate of
1.1 kbps but reduces flicker to unnoticeable levels. Implicit-
Code [19] combines both techniques to simultaneously achieve

invisibility and a high capacity, which is 12× that of HiLight.
In TextureCode [20], they utilize spatial content-adaptive
encoding techniques to achieve both a high goodput of 22 kbps
and minimal flicker. Uber-in-light [21] encodes the data as
complementary intensity changes over different color channels
for any screen content and significantly improves transmission
accuracy.

Although the above approaches provide relatively high
throughput, they suffer from a few disadvantages in live
streaming. They are less reliable due to possible frame loss in
the live-streaming process. Besides, they require a high frame
rate, generally over 120 fps, which is not available in standard
live broadcast tools and typical play terminals. For instance,
the OBS Studio supports 60 fps at most.

B. Hidden Acoustic Channel Communication

Hidden acoustic communication has also been explored
for years [10], [11], [12], [13], [14]. PhoneEar [10] uses
frequency-shift keying (FSK) modulation to encode informa-
tion in frequencies from 17 kHz to 20 kHz, which transmit data
at the speed of 8 bps. Lee et al. [11] adopt chirp binary orthog-
onal keying (BOK) to encode data. They choose a 19.5 kHz
to 22 kHz band for inaudible acoustic communication and
achieve a data rate of 16 bps. Ka et al. [12] leverage chirp
quaternary orthogonal keying (QOK) for modulation in an
18.5 kHz to 19.5 kHz band to deliver information at 15 bps.
By leveraging masking effects of the human auditory system,
Dolphin [13] adopts OFDM for modulation in frequencies of
8 kHz to 20 kHz and achieves a high data rate of 500 bps.
Tagscreen [14] inserts hidden sound markers (i.e., binary
orthogonal chirps at 18 kHz to 20 kHz) into audio for data
communication and designs an efficient decoding algorithm,
which reduces computations.

The aforementioned work has a few limitations. The greatest
one is that all of them leverage near-ultrasound bands with
frequencies higher than 17 kHz to embed data. However, based
on our study in Section III, such a high-frequency acoustic
band would be cut off by an AAC encoder of standard live
broadcast software with a generally used bit rate of 96k.
In addition, few of them mentioned their signal demodulation
delay while the best one [13] claims the delay of 600 ms,
which is not good enough for real-time signal processing.

C. Commercial Streaming Synchronization Solutions

Several commercial solutions have been put forward to
tackle the synchronization challenge between live streams and
information streams. Amazon IVS, for instance, leverages ID3
timed metadata [7] to allow users to convey custom data
within a live stream at specified time intervals [8]. However,
our experiments revealed a synchronization error exceeding
400 ms, a discrepancy noticeable to viewers. On the other
hand, Alibaba Cloud presents a solution that incorporates the
insertion of SEI frames loaded with information during the
H.264 encoding process for video streams [9]. Consequently,
the information is intrinsically synchronized with the live
stream, resulting in minimal synchronization errors on the
viewer’s end during stream decoding. Yet, it’s important to



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4147

highlight that the reliability of the SEI interpolation approach
diminishes when video frame losses occur. A significant
limitation of these commercial solutions lies in their lack
of adaptability. For instance, Amazon IVS solely supports
HLS stream playback, while Alibaba Cloud does not support
DASH. Furthermore, these solutions restrict users’ freedom to
select their cloud service providers and may lead to additional
costs compared to using open-source or standard public cloud
solutions.

Modern television videos and films typically operate at a
frame rate between 24 and 30 frames per second (fps) [22],
[23]. The human eye can generally tolerate a delay of less than
1
24 s (41.67 ms). As such, an ideal synchronization accuracy
between the live stream and the information stream should
fall below 41.67 ms. We consider this as one of our primary
objectives. Moreover, we aim to devise a method that is more
versatile than the previously mentioned commercial solutions.
Our goal is to achieve synchronization that is compatible with
a wide range of CDN platforms and mainstream streaming
technologies.

D. WebRTC

WebRTC is an open-source project released by Google in
2011. By establishing a peer-to-peer connection, both clients
can send video, voice, and generic data to each other [24].
It supports sub–500 milliseconds of real-time latency, which
makes it the fastest protocol on the market. Such a low latency
reduces the burden of synchronizing video streams and other
media content and makes it a fundamental transmission proto-
col for lots of video meeting and chat applications including
Google Meet [25] and Facebook Messenger [26].

Nevertheless, there are several disadvantages of WebRTC
that render it not suitable for our target applications. Basically,
WebRTC is a P2P protocol. The limited bandwidth resource
restricts the number of the audience side that the streamer side
would like to directly communicate with, without sacrificing
the video quality. What is worse, the streamer side should
serve as a CDN itself to deliver streams to the audiences which
requires heavy resource occupation of the computer. However,
in the scenario of live streaming, there might be over a hundred
thousand audiences watching the live at the same time and thus
make it impossible to establish direct communication between
the streamer and audiences. Nonetheless, adding a CDN in
between instead sacrifices the low latency feature of WebRTC.
Besides, there is a serious security concern in browsers that
support WebRTC, which exposes the user’s internal IP address
to the web. This problem still surfaces on Mozilla Firefox [27].

III. CHANNEL AND MODULATION SELECTION

The design of hidden acoustic signals should be inaudible
and easy to be demodulated, which is highly dependent on the
selection of the acoustic carrier frequencies and the modulation
method.

A. Carrier Frequencies Selection

As we discussed in the introduction, we should select a
proper audio band for embedding the information. The selected

Fig. 2. The effects of OBS Studio’s AAC encoder on macOS and Windows
in terms of audio power attenuation and frequency bias across various
frequencies.

band should neither be filtered out by an AAC encoder with
a commonly used bit rate nor interfere with content audio.

AAC encoder. AAC is the de facto audio codec of live
streaming [28]. AAC encoder is the most widely used acoustic
encoder for live streaming on the internet nowadays due to
the incredibly small files it produces. It is also the audio
codec for OBS studio, the most widely used open-source live
streaming software [29]. The first thing we need to figure
out is how the AAC encoder influences our carrier channel
selection. In our experiment, we choose the OBS studio as
the live-streaming broadcast tool. The audio should pass its
AAC encoder before it is transmitted through the network. The
bit rate of the AAC encoder is the most critical parameter,
which determines the audio quality. The higher the bit rate
is, the better the audio quality will be. However, the more
network resources the audio will cost. What is more, the bit
rate also determines the bandwidth, i.e., the low-pass filter
cutoff, of the encoded audio. This is because the codec reduces
the audio bandwidth and modifies the stereo image to keep the
most audible frequencies [30]. To study how an AAC encoder
affects the audio bandwidth, we utilize OBS Studio in both
macOS and Windows with a bit rate of 96k, a commonly
used one for live streaming, to broadcast several single tone
audio clips with different frequencies ranging from 10 kHz
to 18.5 kHz. Next, we collect the received audio clips and
analyze their power decline. Fig. 2a shows that the remained
bandwidths are below 15.5 kHz and 15 kHz on macOS and
Windows, respectively. To further reveal the AAC encoder’s
influence on audio with different frequencies, we analyze
received audio clips with the FFT, find the frequency with
maximized power, and calculate the frequency bias towards
its original single tone frequency. As shown in Fig. 2b, the
audio clips with a frequency higher than 15.5 kHz on macOS



4148 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Fig. 3. The audio frequency cutoff phenomenon when using AAC and mp3.

and 15 kHz on Windows suffer the frequency bias after AAC
encoding. It concludes that only the channels with frequency
lower than 15 kHz are available for us to embed data since
audio with higher frequency is likely to be filtered out by the
AAC encoder, and the embedded data in a higher frequency
channel would be lost.

Other codec. The phenomenon of audio frequency cutoff
is not exclusive to the AAC encoder. We have conducted
similar experiments using the MP3 encoder, another widely
utilized lossy audio codec on macOS. As illustrated in Fig. 3,
audio clips with frequencies exceeding 15.5 kHz and 16.5 kHz
respectively experience frequency bias after AAC and MP3
encoding. The band below 15 kHz selected for AAC is equally
applicable for the MP3 encoder. FLAC, a prevalent codec
for high-quality audio storage, employs lossless compression,
exhibiting no frequency cutoff in our tests [31]. However, its
low compression ratio, necessitating increased bandwidth and
processing power, along with potential device compatibility
and network stability issues, render it unsuitable for live
streaming. Taking into account compatibility, we continue
using AAC as the audio codec for live streaming in the
subsequent sections.

The content audio. Another critical requirement of the
embedded acoustic signal is that it should not interweave
with the original audio. This prevents the content from being
jammed by the embedded signals and also makes the demod-
ulation easier. Previous study [14] shows that the frequencies
of the ambient sound in daily life usually lie below 14 kHz.

Based on the above observations, the best choice is the band
between 14 kHz and 15 kHz. However, this is an audible band,
making the modulation method selection quite challenging.
The selection of the modulation method is discussed in the
following section.

B. Modulation Method Selection

Since the embedded signals are audible, the selected mod-
ulation method should ensure that these signals are easy to
cancel. Besides, even though the ambient sound hardly lies
in the band between 14 kHz and 15 kHz, interference is still
possible. Therefore, the modulation method should also resist
the potential interference [32], [33].

To cancel the embedded signals, we leverage the Web
Audio API [34], a high-level Web API for processing
and synthesizing audio in web applications, to filter the

Fig. 4. CSS symbol spectrogram.

audio before playing. Specifically, Web Audio API provides
the BiquadFilterNode [35], a processor implementing
very common low-order filters. Although we can use the
BiquadFilterNode to add a lowpass filter to attenuate
the frequencies above the cutoff, i.e., 14 kHz, it is infeasible
to wipe out the embedded signals between 14 kHz and 15 kHz.
This is because the filter is a standard second-order resonant
lowpass filter with 12dB/octave roll-off instead of an ideal
lowpass filter. For instance, supposing that the cutoff frequency
is set to 7 kHz, an audio clip with a frequency of 14 kHz would
have − log2

(
14kHz
7kHz

)
× 12dB = −12dB attenuation instead of

being entirely eliminated. Thus, even with the help of the
BiquadFilterNode, we still have to limit the power of
embedded signals to quite a low level so that it could be
inaudible after it gets attenuated by the filter.

Based on the above discussion, we need a modulation
method that ensures that the modulated signals are able to be
demodulated at a low power level and resilient to interference.
In LSync, we select the chirp spread spectrum (CSS) technique
to modulate data. CSS uses wideband linear frequency modu-
lated chirp pulses to encode information, making it robust to
channel noise and easy to be demodulated even if its power
level stays low [36], [37].

IV. CSS SYMBOL AND FRAME DESIGN

Based on the CSS technique, we propose to encode meta-
data into chirps during the signal modulation process and form
a complete packet with other significant frame components.
The encoding and frame designs are elaborated on below.

A. CSS Symbol Design

The CSS technique is ideal for applications that require low
power usage and need relatively low data rates in digital com-
munications. Unlike previous works [11], [12], [14], which use
chirp-BOK or QOK to encode data, we leverage an approach,
which manipulates the starting frequency offset of a baseline
up-chirp to form various shaped chirps and represent different
numbers to further improve the data rate and speed up the
demodulation process.

As shown in Fig. 4a, the frequency of a baseline up-chirp
increases linearly from fc = 14 kHz, the lower bound of the
band we select, to the upper bound fc + BW , where BW
represents the bandwidth. Suppose that the duration of a chirp
is T (0.256 s as the example in Fig. 4). Then the time-domain
function for baseline up-chirp can be expressed as

C(t) = sin
(

2π(fc +
BW

2T
t) · t

)
.



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4149

In order to make the alignment of a packet with the time
window more precisely during the demodulation process,
which would be elaborated in Section V, we set T to be a
power of 2 ms including 32 ms, 64 ms, 128 ms, and 256 ms.

Given the frequency shift f of a baseline up-chirp,
the time-domain function for the resulted symbol is
sin

(
2π(fc + f + BW

2T t) · t
)
. Then all the frequencies higher

than fc+BW will be folded back to fc as shown in Fig. 4b.
We introduce a parameter BN , which is a positive integer and
represents how many bits a chirp is able to encode. In our
design, there are 2BN different equally-distributed shifted
starting frequencies, which results in 2BN uniformly shaped
up-chirps, and each one represents a unique number so that one
specific up-chirp represents an BN bits number. In particular,
the baseline up-chirp shown as Fig. 4a represents 0. And a
shifted chirp whose starting frequency is fc + f represents
the number n, where

n× BW

2BN
= f. (1)

Thus for the chirp shown in Fig. 4b where its frequency shift
is half of the bandwidth, it represents 2BN−1.

With T and BN , we can calculate the bit rate of chirps as

Rb =
BN

T
bps.

Therefore, the smaller T and the greater BN is, the better the
data rate will be. However, the decrease of T and increase of
BN results in lower reception sensitivity, which means that
at the same reception power level, the chirp with a lower T
and a larger BN may be unable to be demodulated while the
chirp with a larger T and a lower BN can. The details are
explained in Section VII. Hence, we have to select a proper
T and BN setting to meet the data rate requirements and the
need for demodulation under low embedded signal power.

To demodulate, we leverage a baseline down-chirp, where
the frequency sweeps decreasingly and its time-domain func-
tion is C∗(t) = sin

(
2π(BW − BW

2T t) · t
)
. By multiplying a

baseline down-chirp, each shifted up-chirp is concentrated on
a single frequency, and the result can be calculated as

sin
(
2π(fc + f +

BW

2T
t) · t

)
sin

(
2π(BW − BW

2T
t) · t

)
=

1
2

[
cos

(
2π(fc + f + BW ) · t

)
− cos

(
2π(fc + f −BW +

BW

T
t) · t

)]
,

where the first part of the result is centralized on a specific
frequency fc + f + BW while the second part is spread in a
wide frequency band. With the help of the FFT, we can find
a peak in the spectrum, analyze the frequency shift f , and
decode the data that the shifted up-chirp indicates.

B. Frame Design

As shown in Fig. 5, a whole packet frame contains two
baseline up-chirps as the preamble, two baseline down-chirps
as the start of frame delimiter (SFD), several shifted up-chirps
as payload, and two shifted up-chirps for CRC-8 symbols.

Fig. 5. The structure of the embedded packet. It includes a preamble and
SFD for packet detection, a payload that contains metadata, and a CRC for
integrity checking.

Preamble and SFD. At the beginning of a packet, the
preamble will be used for packet detection. We use two
baseline up-chirps for the preamble due to the trade-off
between detection reliability and efficiency. Using more than
two baseline up-chirps would make the detection more reliable
but bring more redundancy to a packet. In comparison, if we
only set one baseline up-chirp as the preamble, false-positive
detection is much more likely to occur since a single baseline
up-chirp may appear in the payload or the CRC part other
than the preamble. According to our experiments, two adjacent
baseline up-chirps are much less common.

To further confirm that a new packet is found as well as to
separate the preamble and payload, we add the start of frame
delimiter (SFD), two continuous baseline down-chirps after the
preamble because the down-chirp does not exist in any other
part of a packet. Using two instead of one single down-chirp
is to increase the robustness.

Payload. The payload consists of a few shifted up-
chirps, depending on how much message the packet aims to
deliver and the BN setting. According to our experiment in
Section VII, BN should be between 4 and 8 to guarantee
an acceptable data rate between 31.25 bps to 156.25 bps
and the possibility to demodulate the embedded signal. In
LSync, we encode timestamp into the payload, and the number
of chirps to encode hour, minute, second, and millisecond
respectively should depend on the BN setting. For instance,
if the BN is no less than 6, two chirps should be used to
represent milliseconds with one single chirp for hour, minute,
and second respectively.

CRC. To ensure the integrity of the payload, we use CRC-
8 for bit error detection [38]. Since we set BN to be lower
than 8 and greater than 4, we need to leverage two chirps to
encode a CRC-8 symbol.

V. PACKET SYNCHRONIZATION AND DECODING

Before the audio stream is played, the embedded data must
be decoded on the audience side, which is the web browser
in LSync. The key point is how we can process the signal
in real-time with limited web browser resources. It would be
time-consuming and resource-consuming to leverage similar
approaches in recent work [11], [12], [14] since they require
storing a relatively long audio section that contains at least
one whole packet. We intend to process the audio stream with
a sliding time window whose length is the same as a chirp’s
to achieve real-time analysis and save storage resources. The
demodulation process consists of two main parts: packet
synchronization and decoding.



4150 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Fig. 6. Packet synchronization process.

A. Packet Detection and Synchronization

The first aspect is to locate the exact start point of an
embedded packet in the audio stream. The process comprises
three steps: preamble detection, packet aligning, and SFD
check. Fig. 6 describes the detailed packet synchronization
process.

Preamble detection. The preamble, as the start section of
a packet, consists of two continuous baseline up-chirps. Thus,
in each of the two successive time windows, we multiply a
baseline down-chirp with the audio section, perform FFT and
find the peak to detect the preamble. Even if the preamble is
misaligned with the time windows like the left part of Fig. 7,
the FFT results have the same peak position as shown in
Fig. 8(We transform the original FFT result to the frequency
domain) because half of the shifted chirp in the second window
is the same as the chirp in the first window in terms of the
frequency domain. If the two peak values exceed a threshold,
which means that chirps do exist and share the same peak
position after being multiplied with a down-chirp and FFT
operation in consecutive time windows, we consider it as a
part of a preamble, and then we use the peak position of the
second window to align the packet with time window.

Packet alignment. To align the packet, we need to
calculate how many sample points of the signal should be
moved forward so that each chirp of the signal could be

Fig. 7. Align chirps of the preamble with time window.

Fig. 8. FFT result of two consecutive time windows for the preamble, where
two peaks share the same position.

aligned with the time window. In the left part of Fig. 7, which
shows the misalignment, we express the starting frequency
of the shifted chirp in the second window as f ′, the starting
frequency of a baseline up-chirp as f0 while the total number
of a baseline up-chirp’s sample points as chirp_n. chirp_n
equals T × fs, where fs denotes the sample rate of the audio
and T denotes the duration of a chirp. The number of sample
points to be moved can be calculated as

m =
(f ′ − f0)× chirp_n

BW
.

We multiply a baseline down-chirp with it and perform FFT
for the audio signal in the second time window. There are two
peaks as in Fig. 8b, and we select the greater peak position of
the original FFT result as id′, which represents the left part
of that shifted chirp and indicates its starting frequency. Also,
we make the same operation for baseline up-chirp and there
is only one peak in its FFT result. Let id0 be the single peak
position and fft_n be the sample number of FFT. Note that

(f ′ − f0) =
(id′ − id0)× fs

fft_n
.

Thus, m can be computed as

m =
(id′ − id0)× fs× fs× T

BW × fft_n
.

To ensure the precision of alignment, the computation result
should be a non-negative integer. Consider that the configu-
ration we used in our experiment is fs = 48 kHz, BW =
1 kHz and fft_n should be an integer that is a power of
2 and no less than chirp_n. Supposing that T is a power
of 2 ms and denoted as 2l× 10−3s, chirp_n equals 2l+4× 3.
Thus we set fft_n to be 2l+6 and m can be recomputed as:
m = (id′−id0)×36, which is definitely a non-negative integer.
Otherwise, if T is not a power of 2 ms and is like 100 ms and
chirp_n equal 4800, fft_n should be at least 8192 = 213.
Then m equals (id′ − id0)× 225/8, which is possibly not an
integer if (id′ − id0) is not a multiple of 8.

By moving m sample points of the signal forward, we are
able to align the signal with the time window chirp by chirp.



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4151

SFD check To make sure that the consecutive two baseline
up-chirps we have found are exactly the beginning of a packet,
we should then examine whether the SFD follows them. Since
the packet has been aligned, similarly, we multiply a baseline
up-chirp with the audio signal of each time window, perform
the FFT, and find the peak. If the result is accurately the same
as a baseline down-chirp would produce in both windows,
we confirm that the SFD is found after the preamble and a
new packet is successfully discovered and aligned.

B. Packet Decoding

Once completing the SFD check, it is quite easy to decode
data buried in the packet. In each time window, we multiply a
baseline down-chirp with the shifted chirp, perform the FFT,
and find the peak. Let f be the starting frequency of the shifted
chirp and f0 be the starting frequency of the baseline up-chirp.
According to Eq. 1, we have

(f ′ − f0) = n× BW

2BN
,

where n is the encoded data. Let id be the greater peak position
in the FFT result of the specific shifted chirp and id0 be the
FFT result of a baseline up-chirp. Then n can be decoded as

n =
(id− id0)× fs× 2BN

fft_n×BW
.

When we finish decoding the whole packet, the CRC code
appended to the payload should be used to validate whether
the payload is correctly received and decoded.

VI. TIMELINE-SYNCHRONIZATION MECHANISM

In this section, we will elaborate on the detailed synchro-
nization mechanism, which solves the asynchrony problem
between the streamer and the audience side, as well as copes
with network fluctuations.

A. Synchronization With Little Network Fluctuation

The information stream delay is typically much shorter
than that of the live stream. To ensure synchronization, the
transmitted message in the information channel has to wait
for a short interval intervali&l before it appears on the
audience side, which matches the live stream. We use latencyi

and latencyl to represent the latencies of the information
stream and the corresponding live stream, respectively. The
intervali&l is expressed as:

intervali&l = latencyl − latencyi,

The latency of a live stream is a multifaceted issue,
encompassing aspects such as stream encoding, transcoding,
transmission, and decoding. The encoding, transcoding, and
decoding processes are handled locally on PCs, and the delay
they introduce is largely determined by the PCs’ capabilities,
which tend not to vary significantly. In contrast, the trans-
mission delay can experience significant variations due to
network fluctuations. If we assume minimal network fluctu-
ations, we can simplify the problem by treating the latency of
the live stream as a nearly constant value. On the streamer

side, the local timestamp tsl is recorded and encoded into the
embedded packet, which is transmitted within the audio stream
through the network and demodulated on the audience side.
During the demodulation process, the packet’s start point is
timestamped as tal with the audience’s local clock. Then, the
live stream transmission latency can be computed as:

latencyl = tal − tsl − θ1,

where θ1 represents the time drift between the streamer’s and
the audience’s clocks at the point of tal . As for the information
stream, an emergency event message can be timestamped as tsi
on the streamer side, and both the message and its timestamp
are sent to the audience side. Once received, the message is
timestamped as tai on the audience side, and its delay can be
expressed as

latencyi = tai − tsi − θ2,

where θ2 represents the time drift between the streamer’s and
audience’s clock at the point of tai .

Considering the time drift between the streamer’s and the
audience’s clocks remains stable, that is θ1 ≈ θ2, we have:

intervali&l = tal − tsl − tai + tsi .

The asynchrony problem is mitigated through the calculation.

B. Synchronization With Network Fluctuation

However, in reality, the latency of the live stream can change
over time due to network fluctuations. To address this issue,
we program the streamer to periodically generate embedded
audio packets containing timestamps, such as every 5 s. Upon
receiving a new packet, the audience side updates the estimated
latency using the exponential moving average method. Given
that the last estimated value is latencylj−1 , we express the
updated latency as:

intervallj = α(talj − tslj ) + (1− α)latencylj−1 , (2)

where 0 < α ≤ 1 and j ≥ 2.
When an emergency message with latency tai − tsi is

received, the audience side schedules it to show up after
intervali&l, which is computed as:

intervali&l = latencylj − tai + tsi ,

where latencylj is the most recently updated stream latency.
The embedded packet generation interval and the parameter

α in Equation 2 can be adjusted according to the application
requirements and network situation.

VII. IMPLEMENTATION AND EVALUATION

As shown in Fig. 1, LSync consists of three main com-
ponents, the signal modulator at the streamer side, the live
streaming server for receiving and distributing the stream, and
the audio processing and demodulator at the audience side.
To evaluate the performance of the proposed method, these
components are implemented as follows.

Streamer side. On the streamer side, we leverage OBS
Studio to record live audio/video and push them to the



4152 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

live streaming server through Real-Time Messaging Protocol
(RTMP) [39]. OBS Studio allows multiple audio inputs. There-
fore, we introduce a virtual audio cable with VB-Cable [40]
and generate the modulated signals to OBS Studio via this
cable. The modulated signals are generated following the
frame design, with the current timestamp as the payload.
Generally, the signals are generated every 5 s and then mixed
with the live audio and transmitted to the live streaming server
together. We set the sample rate to 48 kHz and the bit rate of
audio to 96 kHz, which are general settings for a daily live
broadcast. We also turn down the power of the virtual cable
to −62.5 dB, which is nearly the extreme limit for embedded
signal demodulation reliability through practice. Our system
does not hamper a normal live broadcast process, and it works
well in both macOS and Windows. A more user-friendly
software plug-in can further replace the virtual audio cable
for OBS Studio in the future.

Audience side. We develop a web application written in
JavaScript to process audio in real time before being played
on the audience side. The audio is analyzed with Web Audio
API. We use MediaElementAudioSourceNode interface
to access the audio from an HTML <video> element for later
processing. Then we leverage ScriptProcessorNode
interface to handle the audio buffer. When the buffer gets
full, a callback function is invoked, where we demodulate the
signals as our design in Section V. We use fft.js, an imple-
mentation of Radix-4 FFT, to perform FFT operations in signal
processing. Lastly, we use the BiquadFilterNode to filter
the audio, and then it gets played. Since most modern browsers
support Web Audio, the application is available for Google
Chrome, Microsoft Edge, and Mozilla Firefox on Windows
and macOS. We also perform evaluations on Android using
Google Chrome and Mozilla Firefox. Unfortunately, due to
the bug of Webkit [41], Safari on both macOS and iOS is not
tested yet, but once the bug is fixed, this method should work
as expected.

Live streaming server. The live streaming server
is implemented using Node.js. With Node.js package
node-media-server [42], we launch an RTMP server to
receive the live stream pushed by the streamer. In addition, the
server also outputs the stream with various formats and pro-
tocols, including HTTP-FLV [43], HLS [44], and DASH [45].

The rest of this section presents the experiment results. The
performance metrics we prioritize include the packet reception
ratio (PRR), the time offset between the information and the
live stream, and the data rate. The successful reception of
embedded metadata packets is crucial for subsequent synchro-
nization processes, and as such, we consider it the primary
criterion. Typically, modern television videos and films operate
at frame rates between 24 and 30 fps, ensuring that the videos
appear realistic and comfortable to the viewer, as referenced
in [22] and [23] and the frame rate study. The human eye can
tolerate a delay of less than 1

24 s (41.67 ms). If we can achieve
a time offset below 41.67 ms after synchronization, it would
align well with human viewing habits. However, without
synchronization, the temporal offset in standard live streaming
services can be as large as a few seconds. Our experiments,

Fig. 9. The probability of successful packet reception (PRR) under different
BN and T settings. As T increases and BN decreases, PRR also increases.

as outlined in Section VII-F, revealed a synchronization error
exceeding 400 milliseconds when using Amazon IVS’s syn-
chronization solution. We aim to surpass this performance.
The devices that we employ include a PC with an Intel Core
i7-10710U CPU running Windows 10, a MacBook Pro (16-
inch, 2019) with an Intel Core i7-9750H CPU running macOS
11.4, and a Redmi Note 8 Pro mobile phone with a Helio G90T
CPU running Android 10. Most experiments are conducted in
a static indoor office environment. The power of the virtual
audio cable is set to be −62.5 dB so that the embedded signal
after processing can be totally unaware of by audiences even in
such a silent environment. Considering the consistency of the
experiment, the default settings for the article are as follows:
we run the streamer side on MacBook and the audience side
on Google Chrome on PC. We also discuss the versatility of
our solution in the following Section VII-C.

A. Reception Accuracy

We first present the reception accuracy on the audience
side under different BN and T settings. We generate the
modulated packet every 5 s. Therefore, the longest T among
the experiments is set to 256 ms. Supposing that T is greater
than 256 ms, e.g., 512 ms, the length of a total packet will
be over 5.63 s, longer than the sending interval. Meanwhile,
to simplify the encoding process, the lowest BN is set to 4 so
that two chirps are enough to encode CRC-8 for all cases.

Fig. 9 shows the relationship among PRR, BN , and the
chirp length. A too short chirp length T , e.g., 16 ms, makes it
impossible to decode. Instead, a longer chirp length T results
in a higher PRR. If a chirp with a longer duration in the time
domain multiplies with a down-chirp, more energy would be
centralized on a shifted frequency after the FFT, making it
easier to be correctly demodulated under the same low audio
power level. Meanwhile, a large BN , e.g., 9, is also not usable.
A greater BN hampers the PRR because it implies a finer
division of the starting frequency for shifted chirps, making it
harder to distinguish the different shifted frequencies during
the demodulation process.

As a result, to ensure the reception reliability, we should set
T to be no less than 32 ms and BN lower than 9.

B. Data Rate

In section IV, we have shown that the data rate is pro-
portionate to BN and inversely proportional to T , and we



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4153

Fig. 10. Data rate under different BN and T settings. As T increases and
BN decreases, data rate also decreases.

TABLE I
DATA RATE UNDER DIFFERENT BN AND T SETTINGS WITH A PRR

OVER 95%. GIVEN THIS PRR REQUIREMENT, LSYNC IS CAPABLE OF
PROVIDING A DATA RATE OF 125 BPS

TABLE II
DATA RATE UNDER DIFFERENT BN AND T SETTINGS WITH A PRR

OVER 85%. GIVEN THIS PRR REQUIREMENT, LSYNC IS CAPABLE OF
PROVIDING A DATA RATE OF 156.25 BPS

depict the relationship in Fig 10. Based on Fig 9 and Fig 10,
we summarize the greatest data rate that our system can
provide when PRR is greater than 95% in Table I. We list the
result when T ranges from 32 ms to 256 ms with the setting of
BN to achieve the data rate. To compare with our system, the
previous work in Tagscreen [14] reaches a data rate of 50 bps
with 2 kHz bandwidth, which is the most efficient one among
recent works. While LSync can provide a 125 bps data rate
that outperforms their performance when the chirp length is
32 ms, and BN is 4. Besides, the bandwidth we could use is
1 kHz, only half of that in their implementation. What is more,
with a little sacrifice on reception reliability, we can boost the
data rate to 156.25 bps when the chirp length is 32 ms, and
BN is 5 as shown in Table II.

It is worth noting that the selection of the parameters BN
and T should take the data we are to encode into account. For
instance, in LSync, it is optional to use T = 64ms, BN =
6 rather than the configuration with the greatest data rate
where the setting is T = 32ms, BN = 5. With the former
configuration, we can encode minute and second into one
chirp, respectively. While for the latter, two chirps are needed
respectively, which decreases the virtual data rate instead.

C. Versatility

Then, we discuss the versatility of our system. On the
streamer side, we evaluate the performance of LSync on

Fig. 11. Packet reception ratio with different streamer environments.
The streamer side implementation on macOS offers a slightly better PRR
performance compared to Windows.

Fig. 12. Packet reception ratio with different streaming protocols and
browsers on the audience side, when T = 128ms, BN = 7. In terms
of streaming protocols, the performances are similar, with a slightly lower
probability of PRR observed when using DASH. With regards to browser
settings, LSync performs optimally on Google Chrome but has the poorest
performance on Edge.

different operating systems with the configuration shown in
Table II. In these tests, we run the decoding algorithm on
Google Chrome. The results (shown in Fig. 11) indicate that
the streamer side implemented on macOS provides a slightly
better PRR performance compared to Windows. The better
performance results from the feature of the low bit rate AAC
encoder inside OBS Studio according to Section IV, where
the cut-off frequency of the encoder on macOS is a bit higher
than that on Windows. Therefore the embedded signal is better
preserved. Even so, the streamer side on Windows can provide
an acceptable PRR in most cases with the last three settings
in Table II.

While on the audience side, we would like to know if
LSync works well with various protocols and playing termi-
nals. HTTP-FLV, DASH, and HLS are the three most widely
used live-streaming protocols that transmit media content
over HTTP. To evaluate the influence that different streaming
protocols and browsers have, we measure the PRR with
different mainstream browsers and the above three protocols.
Fig. 12 demonstrates the result with the configuration of
T = 128ms, BN = 7.

In general, the PRR is 92% on average among all settings.
On desktop devices, the performances are similar in the aspect
of streaming protocols, except that the PRR using DASH is
slightly lower than the other two protocols. This may be due
to the fragment lengths of different protocols being different.



4154 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

Fig. 13. The average time offset between information and live stream
after synchronization. Setting the update interval to 5 s results in the shortest
time offset between the information and the live stream. Additionally, the
offset decreased as we reduced the value of α, with a possible minimum of
24.83ms.

LSync works best on Google Chrome, where the PRRs are
96%, 92%, and 96% when tested with HTTP-FLV, DASH, and
HLS. Nevertheless, the PRRs slightly drop to 88%, 86%, and
90% when the audience service runs on Microsoft Edge.

On mobile phones, LSync also works well with the three
streaming protocols, i.e., HTTP-FLV, DASH, and HLS. The
PRRs on Android Chrome are 90%, 92%, and 94%, respec-
tively, and on Android Firefox are 94%, 90%, and 94%,
respectively. Although the tests failed to run on iPhones, the
results show that this method does work on ordinary mobile
devices, and it should work on iPhones in the future.

D. Synchronization Precision

We evaluate the precision of the timeline-synchronization
mechanism proposed in Section VI, using the time offset
between information and live stream as the measure of accu-
racy. To test our mechanism, we vary the embedded signal
generation interval on the streamer side to 2 s, 5 s, 10 s, and
30 s, while setting the modulation parameters T = 128ms and
BN = 7. We acquire the local timestamp just before sending
an embedded packet and sent it to the audience side through
the WebSocket [46]. The sending of the WebSocket and the
packet in the live stream occurr simultaneously.

On the audience side, we demodulate the audio signal and
periodically update the live stream latency using Eq. 2, while
scheduling the received WebSocket information to show up
after intervali&l. We vary the parameter α from 1 to 0.25.
We calculate the time offset between the WebSocket infor-
mation shown-up time point and the start point of the
corresponding packet in the live stream.

As shown in Fig. 13, when the update interval is set to
5 s, the delay between the information and the live stream is
the shortest among the four interval settings. If the interval
is too great, the last renewed latency may not reflect the
current network situation, limiting the synchronization pre-
cision. Conversely, if the interval is too small, the frequent
latency updating process may not accurately reflect the more
general network delay, thus hampering synchronization accu-
racy. A packet generation interval of 5 s produces the lowest
time offset, which decreases as we reduce the value of α.
By considering historical measurements, we mitigate the effect
of abrupt changes in the live stream latency.

Fig. 14. Packet reception ratio on Google Chrome on various types of
devices.

With the configuration of α = 0.25 and updating interval
equaling 5 s, the average time offset between the information
and the live stream was as low as 24.83 ms, less than 41.67 ms.
Therefore, our synchronization mechanism is well-suited to
people’s viewing habits.

E. Robustness

In order to comprehensively evaluate our proposed LSync
system, we consider critical factors that include variation in
the capability of devices, signal interference, and network
congestion, exploring their substantial influence on reception
reliability and overall system performance.

Performance across devices. To evaluate the system’s
performance considering the variations in device capabili-
ties, we measure the PRR and processing delay when we
implement the audience side on Google Chrome on various
devices including the PC, MacBook, Redmi, and iPhone. The
experiments are carried out under the configuration shown in
Table II. Although the audio stream cannot be processed due
to the bug [41] on iPhone, we record a clip with the same
quality as the live stream and utilize the browser on iPhone to
process it in the same way.

Fig. 14 shows the PRR on different kinds of devices. Even
though the capability of each device varies, the reception
accuracy of the embedded signal exhibits little difference.

Previous work in [11], [12], [14], and [13] requires the
reception of the whole packet before processing, which makes
the delay from 600 ms to 1600 ms. In LSync, we process the
signal chirp by chirp to eliminate the delay. With the Web
Audio API, we use a double buffer design to load audio signals
while processing them: during loading the next section of
audio signals, the current section is copied to another buffer
and processed.

Fig. 15a exhibits the results of the longest processing dura-
tion for each audio buffer compared with the buffer length. The
greater T is, the longer the chirp length will be, and thus the
buffer length increases. Even on the least performing mobile
device, the Redmi, the processing time for a single buffer is no
longer than 22 ms, 59 ms, 47 ms and 96 ms, respectively with
different T , which is less than every single buffer. Therefore,
during a period when the buffer is receiving the next audio sig-
nal section, the last received section can be entirely processed.
To further illustrate our processing efficiency, we calculate the
mean processing time for different settings. Fig. 15b presents
the result as a percentage between the processing time and the
buffer length. The average processing time for each buffer on
desktop devices is less than 1% of the buffer length. While



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4155

Fig. 15. Processing time for each audio buffer in diverse devices under
different settings. The longest processing time for each buffer is shorter than
the buffer length, thereby ensuring real-time audio processing. In addition, the
average processing time for each buffer is less than 6% of the buffer length.

Fig. 16. Power consumption of LSync and other applications on Redmi
mobile phone.

on mobile phones, the processing takes up a bit more time
but less than 6% on average for each buffer. According to our
experimental results, not only real-time signal processing is
achieved, but also it is highly efficient even on mobile devices
with poor computational performance.

In addition, we conducted a power consumption comparison
of the LSync audience side with various other applications
on the Redmi mobile phone, which included Fruit Ninja (a
lightweight game), the background-running WeChat, YouTube
video playback, Google Maps, and the Camera app for taking
photos. Each application runs for 300 seconds, after which we
gathered energy consumption data and calculated its power
consumption. As illustrated in Fig. 16, when running on
Chrome, LSync exhibited significantly lower power consump-
tion compared to the other applications, except for the Fruit
Ninja. This result highlights the efficiency of LSync’s signal-
processing design, indicating that LSync will not cause a
significant drain on the mobile device’s battery.

Signal interference. To validate our assertion made in
Section III-B, where we mentioned selecting the CSS tech-
nique for data modulation due to its ability to be demodulated

Fig. 17. LSync system performance including embedded packet reception
reliability and the average time offset between information and live stream
after synchronization with different interference strengths.

at a low power level and its resilience to interference, we con-
ducted experiments at various interference strength levels.
We measured both packet reception reliability and synchro-
nization performance. As for the experiment configuration,
the PC and MacBook are connected to the same WLAN.
The streamer side runs on a MacBook, and the audience side
runs on Google Chrome on PC. To represent various levels
of interference strength, we kept the power of the standard
audio cable at 0 dB while adjusting the power of the virtual
audio cable with embedded packet insertion from 0 to −80 dB.
The experiments are carried out with the configuration of
T = 128ms, BN = 7 and the embedded packet generation
interval = 5 s, α = 0.25.

The experimental results are presented in Fig. 17. These
results show a similar pattern across three different stream
protocols. According to the experiments, both PRR and syn-
chronization precision remain stable when the embedded audio
power exceeds −62.5 dB, which is approximately 10−6 of
the standard audio power. However, when the embedded
audio power weakens to −65 dB and −70 dB, the PRR
drops to approximately 75% and 60%, respectively. The
increased packet loss leads to actual time intervals between
successfully received packets exceeding the 5-second sending
interval, resulting in a corresponding decline in synchro-
nization precision. However, even when the embedded audio
power decreases to −75 dB, the synchronization error remains
within 80 ms, and our system continues to function. At an
embedded audio power level as low as −80 dB, no packets
can be successfully recognized and demodulated. Under this
condition, our system cannot operate properly.

The experiments above confirm the robustness of the CSS
modulation technique against interference. LSync performs
flawlessly when the power of the embedded signal exceeds
10−6 of the standard audio. Even when the power diminishes



4156 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

to as low as −75 dB, LSync continues to operate, albeit with
a slight reduction in synchronization precision.

Network congestion. In the context of experimental
validation of LSync technology, network congestion stands
out as a critical factor to consider. By deliberately introducing
and quantifying network congestion in controlled experiments,
we can assess the robustness and performance of LSync.

The experimental setup remains consistent with the configu-
ration described in the preceding section on signal interference,
with the power of the virtual audio cable equaling −62.5 dB.
To evaluate the impact of network congestion on the stream
pushing and pulling stages respectively, we carry out two sets
of experiments as follows:

1) The live streaming server is implemented on PC. The
audience side pulls the stream locally and network
congestion only influences the stream-pushing process.

2) The live streaming server is implemented on MacBook
and thus the streaming-pulling process is affected by
network fluctuations.

We employ the iPerf3 tool [47] to generate UDP background
traffic at varying data rates from the MacBook to the PC,
in order to quantify network congestion.

To start with, we measure the UDP bandwidth available
between the two devices using iPerf3. The average bandwidth
is 419 Mbps. Due to network fluctuations, the instantaneous
available bandwidth ranges from 122 Mbps to 549 Mbps.
Following this, we systematically vary the UDP background
traffic bandwidth from 0 to 420 Mbps. Subsequently, we mon-
itor the delay and throughput of the live stream and evaluate
the performance of the LSync system.

Fig. 18 presents the experimental results. Line numbers
1 and 2 correspond to the aforementioned experimental con-
figuration respectively. The network load represents the ratio
of the bandwidth used by the current UDP background traffic
to the total average 419 Mbps bandwidth. The higher it is,
the more severe the network congestion will be. The figure
shows that in both scenarios, the UDP background traffic has
a similar influence on the system performance. As depicted in
Fig. 18a, when the network load surpasses 83%, the average
throughput of the live stream experiences a sharp decline,
accompanied by an increase in delay. The LSync system
performs accordingly as shown in Fig. 18a. The embedded
packet reception reliability and the synchronization precision
get lower as the UDP traffic increases. When the network load
is already substantial, the live stream experiences stuttering.
Subsequent streams have to wait until there is sufficient avail-
able bandwidth to continue transmission and playback. If the
stream freezing occurs exactly at the location of embedded
audio packets, it leads to data packet corruption, resulting
in reduced packet reception rates. However, due to the short
length of each packet, there is a higher probability that it can
remain intact within the continuous transmission of the live
stream, and the PRR exceeds 80%. On the other hand, even
though the embedded packets are generated every 5 seconds,
the actual time intervals between received packets become
significantly longer due to the stream stuttering. Consequently,
the average time offset between information and the live

Fig. 18. The delay in 5 minutes and throughput of the live stream as
well as the LSync system performance including embedded packet reception
reliability and the average time offset between information and live stream
after synchronization with increasing UDP background traffic.

stream after synchronization increases, as demonstrated in the
previous Section VII-D.

In summary, under conditions where all other traffic utilizes
less than 83% of the average total available bandwidth, the live
stream can be transmitted smoothly, and our LSync system
demonstrates excellent performance. However, in cases where
the live stream experiences stuttering due to increased network
congestion, the LSync system experiences a slight reduction
in packet reception reliability and synchronization precision.

F. Comparative Analysis

To comprehensively assess the strengths and weaknesses of
LSync in comparison to other available solutions, we con-
ducted a comprehensive comparative analysis involving exist-
ing solutions, such as Amazon IVS and Alibaba Cloud live
stream service, as well as insights from prior research papers.
This approach enhances the depth of our evaluation, providing
a more comprehensive understanding of LSync’s effectiveness
and potential limitations.

Amazon IVS employs timed metadata to enable users to
integrate synchronized interactive features into video appli-
cations. It utilizes ID3 timed metadata to transmit customized
data within a live stream at specific time points. The streaming
process is visualized in Fig. 19. In our experimental setup,
we utilized the standard OBS Studio for streaming, and the
AWS CLI for timed metadata insertion. On the audience side,
an event is triggered whenever playback reaches a segment
with embedded metadata, using the Amazon IVS Player
SDK [8]. When implementing the Alibaba Cloud solution,
it requires a customized version of OBS Studio to support
SEI frame insertion functionality as depicted in Fig. 20. The
SEI frame containing information is inherently synchronized



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4157

TABLE III
COMPARISON AMONG LSYNC AND COTS STREAM

SYNCHRONIZING SOLUTIONS

Fig. 19. Information synchronization with Amazon IVS based on ID3 tags.

Fig. 20. Information synchronization with Alibaba Cloud based on SEI frame
insertion.

Fig. 21. The comparison of average time offset between information and
live stream after synchronization for different solutions.

with the live stream. We assessed the average information syn-
chronization precision for both COTS solutions and compared
them with our proposed LSync solution.

The comparative assessment results are summarized in
Table III. Besides, The comparison of average time offset
between information and live stream after synchronization
for the three solutions under different network congestion
condition is shown in Fig. 21. Among the evaluated solutions,
Alibaba’s approach, utilizing SEI frame insertion, demon-
strates the highest synchronization precision due to its intrinsic
information-stream synchronization. In contrast, Amazon’s
solution, which relies on ID3 tags, exhibits the lowest synchro-
nization precision when aligning transmitted metadata with
the stream. Moreover, its performance drastically decreases as

network congestion intensifies. The timed metadata uses ID3
tags embedded in the audio segments for synchronization. The
mismatch between the data and the segment as well as the
length of each segment can cause a relatively large misalign-
ment. LSync shows significantly improved synchronization
precision compared to Amazon IVS. However, there is still
room for enhancement to catch up with the SEI frame insertion
approach.

In terms of robustness, the SEI interpolation approach may
become less reliable when there are potential video frame
losses. Meanwhile, since ID3 tags are typically stored within
the audio data portion, the transmission is susceptible to audio
segment loss or corruption, dependent on network connection
stability and audio encoding quality. Based on our experi-
ments, we’ve observed that the information packet loss rate
can skyrocket to a staggering 60% during periods of severe
network congestion. Despite the potential for packet loss or
network interruptions that affect the transmission of embedded
audio packets in LSync, the system maintains functionality
with a slight reduction in synchronization precision, albeit with
decreased PRR and longer time intervals between received
embedded packets.

From a system versatility perspective, LSync outperforms
the other solutions. While LSync works seamlessly with
FLV, DASH, and HLS, Amazon IVS only supports HLS
stream playback, and Alibaba Cloud lacks support for DASH.
On the streamer side, both Amazon IVS and LSync offer
versatility in streamer application choices, whereas Alibaba
Cloud requires a specific, modified OBS Studio for SEI
frame embedding or the development of a custom streamer
application based on their provided SDK. Regarding the
server, users have the flexibility to choose cloud service
providers with LSync, whereas Amazon and Alibaba provide
no such freedom and their live streaming services entail
additional costs.

From a technical standpoint, LSync can be classified as a
form of hidden acoustic channel communication technique.
To evaluate its capabilities, we conducted a comparative anal-
ysis with previous research papers.

The summarized results are presented in Table IV. LSync
distinguishes itself by being the pioneer in implementing the
CSS modulation technique for concealed acoustic channel
communication. Notably, it stands alone in refraining from
utilizing the near-ultrasound bands with frequencies exceeding
17 kHz for data embedding. This is essential since such
near-ultrasound bands would be filtered out by an AAC
encoder, which is a standard component of live broadcast soft-
ware. Consequently, other research methods cannot be directly
applied to livestream services. Moreover, LSync exhibits an
exceptional channel utilization of 156.25 bps/kHz, surpassing
Tagscreen by almost sixfold and Dolphin by fourfold. Never-
theless, there is potential for further enhancement in LSync’s
performance. This includes the possibility of expanding the
bandwidth of the embedded audio into lower frequency ranges
and applying more powerful filtering processes to enhance its
quality. These improvements can lead to increased throughput,
making LSync more competitive for concurrent live streaming
and data transmission.



4158 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

TABLE IV
COMPARISON WITH HIDDEN ACOUSTIC CHANNEL COMMUNICATION RESEARCH PAPERS

VIII. CONCLUSION

In this work, we present LSync, for the synchronization
of traditional live streams and other media content. A key
innovation is to insert a hidden signal in an audible band
and eventually recover the embedded data and makes no
disturbance to the audience as well through elaborate signal
modulation and processing. We leverage the CSS technique
to modulate signals, which makes sure that the signal can be
demodulated at a very low power level. We achieve completely
real-time signal processing and improve the data rate to
156.25 bps with a bandwidth of only 1 kHz. The proposed
synchronization mechanism reaches a precision of 24.83 ms
on average, that fits people’s viewing habits. We implement
both the streamer side and the audience side with various
streaming protocols like HTTP-FLV, DASH, and HLS at
several mainstream browsers on desktop and mobile devices,
which validate the versatility of LSync.

REFERENCES

[1] Z. Yin, C. Wu, Z. Yang, and Y. Liu, “Peer-to-peer indoor navigation
using smartphones,” IEEE J. Sel. Areas Commun., vol. 35, no. 5,
pp. 1141–1153, May 2017.

[2] W. Gu, Z. Yang, L. Shangguan, W. Sun, K. Jin, and Y. Liu, “Intelligent
sleep stage mining service with smartphones,” in Proc. ACM Int. Joint
Conf. Pervasive Ubiquitous Comput., Sep. 2014, pp. 649–660.

[3] Rain Classroom. Accessed: Nov. 1, 2023. [Online]. Available:
https://www.yuketang.cn/

[4] HQ Trivia. Accessed: Nov. 1, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/HQ_(video_game)

[5] Live Streaming Process. Accessed: Nov. 1, 2023. [Online]. Available:
https://www.dacast.com/blog/what-is-live-streaming/

[6] W. Jiang, S. S. Ge, and D. Li, “Fixed-time-synchronized control: A
system-dimension-categorized approach,” Sci. China Inf. Sci., vol. 66,
no. 7, Jul. 2023, Art. no. 172203.

[7] ID3. Accessed: Nov. 1, 2023. [Online]. Available: https://en.
wikipedia.org/wiki/ID3

[8] Amazon IVS User Guide. Accessed: Nov. 1, 2023. [Online]. Available:
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/
metadata.html

[9] Solution of Alibaba Cloud for Live Quiz. Accessed: Nov. 1, 2023.
[Online]. Available: https://developer.aliyun.com/article/394552

[10] A. S. Nittala, X.-D. Yang, S. Bateman, E. Sharlin, and S. Greenberg,
“PhoneEar: Interactions for mobile devices that hear high-frequency
sound-encoded data,” in Proc. 7th ACM SIGCHI Symp. Eng. Interact.
Comput. Syst., Jun. 2015, pp. 174–179.

[11] H. Lee, T. H. Kim, J. W. Choi, and S. Choi, “Chirp signal-based
aerial acoustic communication for smart devices,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 2407–2415.

[12] S. Ka et al., “Near-ultrasound communication for TV’s 2nd screen ser-
vices,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., Oct. 2016,
pp. 42–54.

[13] Q. Wang, K. Ren, M. Zhou, T. Lei, D. Koutsonikolas, and L. Su,
“Messages behind the sound: Real-time hidden acoustic signal capture
with smartphones,” in Proc. 22nd Annu. Int. Conf. Mobile Comput.
Netw., Oct. 2016, pp. 29–41.

[14] Q. Lin, L. Yang, and Y. Liu, “TagScreen: Synchronizing social televi-
sions through hidden sound markers,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2017, pp. 1–9.

[15] X. Chen, X. Wu, X.-Y. Li, X. Ji, Y. He, and Y. Liu, “Privacy-aware
high-quality map generation with participatory sensing,” IEEE Trans.
Mobile Comput., vol. 15, no. 3, pp. 719–732, Mar. 2016.

[16] Z. Yang, L. Jian, C. Wu, and Y. Liu, “Beyond triangle inequality: Sifting
noisy and outlier distance measurements for localization,” ACM Trans.
Sensor Netw., vol. 9, no. 2, pp. 1–20, 2013.

[17] A. Wang, Z. Li, C. Peng, G. Shen, G. Fang, and B. Zeng, “InFrame++:
Achieve simultaneous screen-human viewing and hidden screen-camera
communication,” in Proc. 13th Annu. Int. Conf. Mobile Syst., Appl.,
Services, May 2015, pp. 181–195.

[18] T. Li, C. An, X. Xiao, A. T. Campbell, and X. Zhou, “Real-time screen-
camera communication behind any scene,” in Proc. 13th Annu. Int. Conf.
Mobile Syst., Appl., Services, May 2015, pp. 197–211.

[19] S. Shi, L. Chen, W. Hu, and M. Gruteser, “Reading between lines: High-
rate, non-intrusive visual codes within regular videos via ImplicitCode,”
in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., Sep. 2015,
pp. 157–168.

[20] V. Nguyen et al., “High-rate flicker-free screen-camera communication
with spatially adaptive embedding,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun., Apr. 2016, pp. 1–9.

[21] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li, “Uber-in-light: Unobtrusive
visible light communication leveraging complementary color channel,”
in Proc. IEEE INFOCOM 35th Annu. IEEE Int. Conf. Comput. Com-
mun., Apr. 2016, pp. 1–9.

[22] A. Mitchell and M. Mitchell, Visual Effects for Film and Television.
New York, NY, USA: Taylor & Francis, 2004.

[23] Frame Rate: A Beginner’s Guide. Accessed: Nov. 1, 2023. [Online].
Available: https://www.techsmith.com/blog/frame-rate-beginners-guide/

[24] WebRTC. Accessed: Nov. 1, 2023. [Online]. Available:
https://webrtc.org/

[25] Google Meet. Accessed: Nov. 1, 2023. [Online]. Available:
https://meet.google.com/

[26] Facebook Messenger. Accessed: Nov. 1, 2023. [Online]. Available:
https://www.messenger.com/

[27] Prevent WebRTC From Leaking Local IP Address. Accessed:
Nov. 1, 2023. [Online]. Available: https://github.com/
gorhill/uBlock/wiki/Prevent-WebRTC-from-leaking-local-IP-address

[28] M. Bosi, “ISO/IEC MPEG-2 advanced audio coding,” J. Audio Eng.
Soc., vol. 45, no. 10, pp. 789–814, 1997.

[29] OBS Studio. Accessed: Nov. 1, 2023. [Online]. Available:
https://obsproject.com/

[30] SBR White Paper. Accessed: Nov. 1, 2023. [Online]. Available:
http://users.
ece.utexas.edu/~gerstl/ee382v_f14/soc/drm/SBR_White_Paper_v1.pdf

[31] What is FLAC. Accessed: May 13, 2024. [Online]. Available:
https://xiph.org/flac/

[32] C. Li, H. Chen, Z. Wang, Y. Sun, X. Li, and T. Qin, “Two-stage
constructions for the rate-compatible shortened polar codes,” Tsinghua
Sci. Technol., vol. 28, no. 2, pp. 269–282, Apr. 2023.

[33] F. Dang, P. Zhou, Z. Li, and Y. Liu, “NFC-enabled attack on cyber
physical systems: A practical case study,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), May 2017, pp. 289–294.

[34] Web Audio API. Accessed: Nov. 1, 2023. [Online]. Available:
https://developer.mozilla.org/en-U.S./docs/Web/API/Web_Audio_API

[35] Web Audio BiquadFilterNode. Accessed: Nov. 1, 2023.
[Online]. Available: https://developer.mozilla.org/zh-
CN/docs/Web/API/BiquadFilterNode

[36] Y. Lin, W. Dong, Y. Gao, and T. Gu, “SateLoc: A virtual fingerprinting
approach to outdoor Lora localization using satellite images,” ACM
Trans. Sensor Netw., vol. 17, no. 4, pp. 1–28, Nov. 2021.

[37] D. Lin, Q. Wang, W. Min, J. Xu, and Z. Zhang, “A survey on energy-
efficient strategies in static wireless sensor networks,” ACM Trans.
Sensor Netw., vol. 17, no. 1, pp. 1–48, Feb. 2021.



DANG et al.: LSync: A UNIVERSAL TIMELINE-SYNCHRONIZING SOLUTION 4159

[38] Cyclic Redundancy Check. Accessed: Nov. 1, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

[39] Real-time Messaging Protocol (RTMP) Specification. Accessed:
Nov. 1, 2023. [Online]. Available: https://helpx.adobe.com/adobe-media-
server/dev/stream-live-media-rtmp.html

[40] VB-Cable Virtual Audio Device. Accessed: Nov. 1, 2023. [Online].
Available: https://vb-audio.com/Cable/

[41] Safari CreateMediaElementSource Broken on HLS/m3u8 Video Sources.
Accessed: Nov. 1, 2023. [Online]. Available: https://stackoverflow.
com/questions/60889426/is-safari-createmediaelementsource-broken-
on-hls-m3u8-video-sources

[42] Node Media Server. Accessed: Nov. 1, 2023. [Online]. Available:
https://github.com/illuspas/Node-Media-Server

[43] Flash Video. Accessed: Nov. 1, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Flash_Video

[44] HTTP Live Streaming. Accessed: Nov. 1, 2023. [Online]. Available:
https://developer.apple.com/streaming/

[45] Dynamic Adaptive Streaming Over HTTP. Accessed: Nov. 1, 2023.
[Online]. Available: https://en.wikipedia.
org/wiki/Dynamic_Adaptive_Streaming_over_HTTP

[46] Websockets. Accessed: Nov. 1, 2023. [Online]. Available:
https://websockets.readthedocs.io/en/stable/

[47] IPerf-The Ultimate Speed Test Tool for TCP, UDP and SCTP. Accessed:
Nov. 1, 2023. [Online]. Available: https://iperf.fr/

Fan Dang (Member, IEEE) received the B.E.
and Ph.D. degrees in software engineering from
Tsinghua University, Beijing, in 2013 and 2018,
respectively. He is a Research Assistant Professor
with the Global Innovation Exchange, Tsinghua
University. His research interests include industrial
intelligence, edge computing, and mobile security.
He is a member of ACM.

Yifan Xu (Student Member, IEEE) received the
B.S. degree in software engineering from Tsinghua
University, Beijing, in 2020, where he is currently
pursuing the Ph.D. degree with the School of
Software. His research interests include the indus-
trial internet, the Internet of Things, and network
scheduling.

Rongwu Xu received the B.E. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2022, where he is currently
pursuing the M.S. degree with the Institute for
Interdisciplinary Information Sciences. His research
focuses on applying machine-learning techniques to
solve network security and privacy problems.

Xinlei Chen (Member, IEEE) received the B.E.
and M.S. degrees in electronic engineering from
Tsinghua University, China, in 2009 and 2012,
respectively, and the Ph.D. degree in electrical engi-
neering from Carnegie Mellon University, USA.
He is an Assistant Professor with Shenzhen Interna-
tional Graduate School, Tsinghua University. He was
a Post-Doctoral Research Associate with the Elec-
trical Engineering Department, Carnegie Mellon
University, from 2018 to 2020. His research interests
lie in AIoT, pervasive computing, and cyber-physical

systems. He has won several awards from top-tier conferences, including the
Best Poster Award from IEEE/ACM IPSN, the Best Demo Award from ACM
SenSys, and the Best Paper Award from CPD Workshop of ACM UbiComp.

Yunhao Liu (Fellow, IEEE) is a Professor with
the Department of Automation and the Dean of the
Global Innovation Exchange, Tsinghua University,
Beijing. He was a Chang Jiang Professor and the
Dean with the School of Software, Tsinghua Univer-
sity, from 2013 to 2017. From 2018 to 2019, he was
the Chairperson Designee with the Department
of Computer Science and Engineering, Michigan
State University. His research interests include the
Internet of Things, wireless sensor networks, indoor
localization, the industrial internet, and cloud com-

puting. He is a Fellow of ACM.




