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CatUA: Catalyzing Urban Air Quality Intelligence
Through Mobile Crowd-Sensing
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Abstract—Mobile air pollution sensing methods have emerged
to collect air quality data with improved spatial and temporal
resolutions. However, existing methodologies struggle to effectively
process spatially mixed gas samples due to the highly dynamic
fluctuations experienced by sensors, resulting in significant mea-
surement deviations. We identify an opportunity to address this
issue by exploring potential patterns within sensor measurements.
To this end, we propose CatUA, a novel city-scale fine-grained air
quality estimation system designed to deliver accurate mobile air
quality data. First, we design AirBERT, a representation learning
model specifically aimed at discerning mixed gas concentrations
from sensor data. Second, we implement a Prompt-informed Train-
ing Strategy that leverages extensive unlabeled and minimal labeled
city-scale data to enhance the performance of CatUA. Notably, the
Auto-Prompt mechanism allows CatUA to conveniently acquire
new knowledge tailored to specific downstream tasks. To ensure
the practicality of CatUA, we have invested considerable effort in
developing the software stack on our meticulously crafted Sensing
Front-end, which has successfully gathered city-scale air quality
data for over 1,200 hours. Experiments conducted on the collected
data demonstrate that CatUA reduces sensing errors by 96.9%
with a latency of only 44.9 ms, outperforming the state-of-the-art
baseline by 42.6 %.
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I. INTRODUCTION

N THE quest to safeguard public health, monitoring air

quality emerges as a crucial undertaking. The World Health
Organization has attributed over 7 million premature deaths
worldwide to deteriorating air quality-related diseases [2]. Typ-
ically, city-scale air quality monitoring heavily relies on me-
teorological stations. However, these stations, limited in num-
ber and fixed in location, can only offer a coarse-grained
view of urban air quality as depicted in Fig. 1(a). This lim-
itation is particularly concerning given that major air pol-
lutants (e.g., PM, VOCs, NO, CO) demonstrate signifi-
cant dispersion effects over merely hundred-meter-scale dis-
tances. As a result, people lack access to fine-grained air
quality information in their immediate living and working
environments [3].

To enhance the granularity of air quality monitoring, a
naive approach is to extensively deploy static air quality
sensing nodes across the city (Fig. 1(b)). However, the high
costs of deploying and maintaining such a widespread sens-
ing system render it impractical for large-scale implemen-
tation [8], [9], [10]. In contrast, a more promising solution
lies in mobile crowd-sensing (MCS), which utilizes crowd-
sourced vehicles (e.g., taxis) equipped with sensing nodes
(Fig. 1(b)) [11]. These vehicles continuously gather and report
air pollutant concentration data and their sampling locations
while moving, offering city-wide coverage and fine-grained
measurements.

Albeit inspiring, vehicle mobility presents notable challenges
for MCS in precise city-scale air quality monitoring. Com-
mercial sensors, with a gas collection and response time of
30~150 s,! may result in spatially mixed gas samples as ve-
hicles move around 300 m (i.e., 40 km/h velocity). This issue
is compounded of sensors response, gas mixing process and
continuously creating blended measurements from adjacent lo-
cations with low accuracy. As depicted in Fig. 2, measurements
from sensors on moving vehicles are average 170% less accurate
than those from stationary ones. Therefore, it is imperative to

'We have analyzed the response time of air pollution sensors manufactured
by 5 popular enterprises on the market, including City Tech [12], Alphasense
[13], Figaro [14], Membrapor [15], and SGX Sensortech [16].
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Fig. 2. The average relative errors for static and mobile sensing are 4% and
174%, respectively.

estimate accurate and fine-grained air quality data from those
spatially mixed gas measurement time series [17].

Nowadays, Bidirectional Encoder Representations from
Transformers (BERT) has proven effective in time series analy-
sis, thanks to its bidirectional context interpretation. In this work,
we aim to explore the potential of BERT to accurately derive
true pollutant concentrations from spatially mixed gas measure-
ments. Specifically, BERT’s ability to contextualize data points
makes it well-suited for unraveling the intricate data in urban
air quality monitoring. However, translating this insight into a
practical city-wide MCS system is non-trivial and faces two
challenges: (C1) Distinctive characteristics of spatially mixed
gas measurements: Unlike typical time series, gas measure-
ments exhibit pronounced non-stationary and non-Markovian
characteristics, posing challenges in isolating authentic gas con-
centration from interference introduced by other gas samples.
Existing approaches frequently overlook the mixing effect of
gas samples from diverse sensing positions or focus solely on
scenarios with low sensor mobility [18]. (C2) The network for
city-scale air quality estimation is hard to converge with limited
labeled data: Initially, acquiring labeled data is challenging, as
mobile sensors only sporadically encounter sparsely scattered
stations which provide ground truth. Consequently, plenty of
sensor readings lack ground truth, negatively impacting the
performance of learning-based methods that heavily rely on
labeled data. Furthermore, attaining a generalized model for
city-scale deployment necessitates the collection of labeled data
across diverse usage scenarios in a city [19], [20], [21]. This is
particularly challenging due to the geographical variation of air
pollution, exacerbating the situation.

To address these challenges, this work proposes CatUA, the
first city-scale air quality estimation system with high-frequency
sampling mobile sensors. (S1) To tackle (C1): we design a
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3-block AirBERT model based on correlation analysis to re-
move the mixing influence of other gas samples on the true
concentration, which enables BERT to process the spatially
mixed gas measurements. AirBERT, thoughtfully crafted, is
lightweight and can be deployed on edge devices for real-time
estimation. (S2) To tackle (C2): we propose a Prompt-informed
Training Strategy that significantly minimizes the reliance on
labeled data. Initially, we design a pretraining phase based on
a masked language model (MLM) that integrates geograph-
ical information, enabling AirBERT to capture the evolving
patterns of sensor measurements across diverse regions utiliz-
ing extensive, unlabeled city-scale datasets. Following this, we
transition into the prompt learning phase, wherein we utilize
minimal labeled data in conjunction with representations de-
rived from the pretraining phase. This approach allows Air-
BERT to effectively establish the mapping relationship be-
tween sensor measurements and actual pollutant concentrations
in a supervised manner. Consequently, our training strategy
markedly alleviates the necessity for large volumes of labeled
data.

To enhance the practical applicability of CatUA, we have
dedicated significant resources to deploying the software stack
on our meticulously engineered Sensing Front-end. CatUA has
successfully operated for over 1,200 hours, covering an exper-
imental trajectory of more than 1,067 km? in a major interna-
tional city, with a spatial resolution of less than 50 meters. We
conducted extensive experiments across varying sampling and
labeling rates for different air pollutants. Our results demonstrate
that CatUA achieves an average reduction in measurement error
of 96.9% with a latency of 44.9ms, outperforming the state-of-
the-art(SOTA) baseline by 42.6%.

In summary, the main contributions are as follows:

® We propose CatUA, as far as we are aware, the first accu-
rate, city-scale, fine-grained air quality monitoring system
based on mobile crowd sensing (MCS).

e We propose a novel estimation module that integrates
AirBERT with a Prompt-informed Training Strategy to
effectively disaggregate spatially mixed gas measure-
ments while minimizing the reliance on labeled data at
the city scale. This approach extracts non-stationary and
non-Markovian features, capturing the mutual influences
among sensor readings. Notably, the plug-and-play Auto-
Prompt enhances the pre-trained network’s adaptability to
specific downstream tasks.

e We design a modular Sensing Front-end with separate
chambers and active airflow design, which aims to collect
highly mobile air quality data under high sampling rates.

® We implement and evaluate CatUA with massive data in
real-world environment. Extensive city-wide evaluation
results show the effectiveness of CatUA in estimating air
pollutant concentrations.

The rest of the paper is organized as follows. Section II details
our motivation. Section III presents the system overview of
CatUA, followed by novel designs and system implementation in
Sections IV to VI. Sections VII and VIII-A evaluate our system
and present practical applications. Sections IX and X review
related works and conclude the paper.
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II. BACKGROUND OF AIR QUALITY MEASUREMENT

In the field of air quality assessment, electrochemical (EC)
sensors are favored for their cost-effectiveness and portability,
accounting for over 23% of global revenue [22]. Despite their
widespread use, commercial EC sensors often exhibit signif-
icant measurement errors during mobile sensing, particularly
at elevated sampling rates. This issue primarily arises from the
differences in the chemical reactions of the sensors and the delay
in their response times.

Specifically, the chemical reaction refers to the process in
which gas molecules diffuse into the sensor through a porous
membrane due to the concentration gradient when the external
gas concentration increases. These molecules then undergo reac-
tions on the surface of the working electrode (WE), transferring
electrons from the WE to generate a current that flows through
the external circuit to the counter electrode (CE), as shown in
Fig. 3. However, this process may lead to issues such as reading
drift, cross-sensitivity, and the need for long-term maintenance,
all of which result in discrepancies between the sensor readings
and the actual gas concentration. Response time refers to the time
delay required for the sensor reading to stabilize after a change
in gas concentration. This parameter is inherently determined
by the working principle of the sensor [23] and consists of three
main components: diffusion time, chemical reaction time, and
electrical signal generation time.

Diffusion time: According to Fick’s law, it takes time for
gas molecules to diffuse from the external environment to the
electrode surface, and this diffusion rate depends on the sensor
structure, electrode spacing, and the diffusion coefficient of the
electrolyte.

Chemical reaction time: Governed by reaction kinetics, the
gas reactions on the electrode surface occur continuously over
time. The chemical reaction time is influenced by factors such
as gas concentration, temperature, and Gibbs free energy [24].

Electrical signal generation time: This refers to the time
required to generate a current in the sensor, which can usually
be neglected since the establishment of an electric field occurs
at the speed of light.

III. OVERVIEW
A. Problem Formulation

1) Gas Concentration Mixing Mode: To achieve a high sam-
pling rate, the reading from a sensor would represent the sample
of the quality of the air over a distance as a vehicle moves.
Therefore, stable and accurate concentration measurements for
the sampled gas are unattainable due to the incomplete reaction.
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Moreover, the residual gas from the prior sampling lingers in the
sensor, influencing the measurement of the currently sampled
gas.

As aresult, the gas in the sensor comprises both the presently
sampled external gas and the residual gas from the preceding
sampling. To streamline the complex processes of gas diffusion
and EC reactions, the gas concentration I; within the sensor at
each sampling time is expressed as the following linear combina-
tion, accounting for both “current” and “previous” components.

fort>1,

. tht + (1 — wt)It_l
L= { fort=0, S

wo R

where R; denotes the target “current” gas concentration to
measure, and w; serves as the coefficient to balance the 2
components.

Additionally, due to issues such as sensor drift, cross-
sensitivity, and the lack of long-term maintenance, the actual
sensor reading is typically C; instead of I;. Specifically, sensor
drift causes the measurement accuracy to change over time,
cross-sensitivity leads to interference from other gases, affecting
the measurement of the target gas concentration, and insuffi-
cient long-term maintenance may result in sensor performance
degradation and the accumulation of measurement errors. The
combined effect of these factors results in the sensor reading C;
not accurately reflecting the true gas concentration I, thereby
introducing errors and instability. In addition, C} is affected by
the previous sensor measurement due to the continuous nature of
the EC reaction. Consequently, C; can be expressed as a similar
linear combination as follows,

C o {w;[t + (1 — ’U}g)Ct,1
t — /I
’LUO 0

fort>1,

fort=0, 2)

where C}_; refers to previous sensor measurement. w) balances
the mixed gas concentrations and previous sensor measurement.

2) Concentration Estimation Problem: The inference of R;
can be formulated as a hidden state estimation problem. During
mobile sensing, we can only collect a biased sensor measurement
C; instead of the real value R;. Thus, the true gas concentra-
tion can be treated as a hidden state, while the corresponding
sensor measurement can be viewed as system observation. Our
objective is to infer the hidden states accurately with system
observations.

Consequently, the problem can be formalized as follows,

T
argming Y _[|f(Ce) — Rill3. 3)

t=1

where T is the length of the measurement sequence. Eq(3)
illustrates we need to find an estimation function f to map
observations to state values. Our goal is to minimize the L2-norm
error between estimated results and hidden states.

B. System Design Overview

CatUA has been developed to minimize measurement errors
associated with mobile EC sensors. The system architecture,
as depicted in Fig. 4, comprises two main components: an
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Fig. 4.

CatUA consists of the air quality mobile sensing and an estimation module. The estimation module is composed of AirBERT to separate the mixed

measurements of gas concentrations, an pre-train phase utilizing masked samples generated from massive unlabeled data, and a fine-tune mechanism using limited

labeled data.

air quality mobile sensing module and an estimation mod-
ule. Initially, CatUA collects air quality data alongside ve-
hicular information using mobile sensors and a speedometer.
Subsequently, historical sensor measurements are categorized
into labeled and unlabeled datasets based on the proximity
to the nearest monitoring station. These datasets are then uti-
lized for the sequential pretraining and prompt learning of
AirBERT. During the inference phase, the prompt-tuned Air-
BERT is deployed to accurately translate sensor readings into
precise concentration values, thus enabling real-time estima-
tion of air quality measurements across metropolitan areas.
To achieve these objectives, CatUA integrates three essential
components:

® AirBERT (Section IV): We design a tailored gas concen-
tration separation model called AirBERT to process spa-
tially mixed gas measurements. It models and eliminates
the mixing influence of other sensor readings on a target
measurement by extracting the correlation among adjacent
readings.

® Prompt-informed Training Strategy (Section V): To ensure
the effectiveness of AirBERT across urban environments,
we propose a pretraining task utilizing masked language
modeling (MLM). This task generates masked sample-
label pairs from extensive unlabeled sensor readings, fa-
cilitating AirBERT’s ability to learn the spatial and tem-
poral patterns of sensor measurements throughout the city.
Following this, a minimal set of labeled measurements is
employed for prompt learning, enhancing AirBERT’s pre-
dictive accuracy by aligning its outputs more closely with
the ground truth data obtained from monitoring stations
through structured prompts.

o Sensing Front-end (Section VI): We meticulously design
the CatUA sensing front-end to facilitate the acquisition
of mobile air quality data at high sampling rates. Our
sensing front-end incorporates various innovative features,
including the miniaturization of reaction chambers and an
active airflow design. These enhancements aim to create

a stable reaction environment and minimize the diffusing
time of EC sensors.

IV. AIRBERT FOR CONCENTRATION SEPARATION
A. Observation

To find an effective estimation function, we first model the
correlation between C; and R;. Combining (1) and (2), the
correlation can be expressed as follows,

N
Ct = WR, R + Z We,_,r thnTa

n=1

“)

where wgr, and wc, . represent the influence coefficients of
R; and prior sensor measurements on C;, respectively, both
determined by w; and wj. Eq (4) suggests the necessity of
mitigating the effects of previous sensor measurements on C; in
order to accurately ascertain the true value of R;.

According to (4), C; displays both non-stationary and non-
Markovian characteristics. First, C; is non-stationary, as its
statistical properties, including mean and variance, demonstrate
temporal fluctuation and spatial variability. This behavior stems
from the dynamic nature of air pollutant concentrations, which
are affected by chronological and geographic factors within the
urban environment. Second, C; is non-Markovian, indicating
that its values are not solely dependent on the current gas
concentration but also on a sequence of prior measurements.
Consequently, future values are influenced by the entire history
of observations rather than merely the immediately preceding
state.

Originally designed for NLP applications, Bidirectional En-
coder Representations from Transformers (BERT) is an effec-
tive representation learning technique, which aims to extract
semantic features and contextual representations from massive
corpus data [25]. Specifically, the multi-head attention mech-
anism in transformer blocks can gather information from to-
kens in multiple positions, which allows BERT to consider
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long-distance sequential dependencies. In addition, multiple
bidirectional-connected transformer encoders also encode input
sequences from both directions, which allows BERT to consider
the contextual correlation.

Thanks to the extraordinary ability to learn representations
from sequences, BERT has been extended to process complex
time series tasks, such as pandemic prediction [26] and video
representations [27], [28]. Thus, we design a novel AirBERT
model to separate the mixed gas concentrations using contextual
correlation among sensor measurements.

B. AirBERT Design

Fig. 5(a) illustrates the AirBERT framework, which incorpo-
rates correlation analysis, mixing influence analysis, and con-
centration separation. The process begins with the calculation
of self-attention weights to evaluate the influence coefficients
of R; and previous sensor measurements on C}, utilizing the
dot-product as the scoring function. Subsequently, these coeffi-
cients, along with the prior sensor measurements, are multiplied
to derive the influence values. In the final stage of concentration
separation, AirBERT mitigates the influences from C} through
a linear combination, ultimately producing the estimated R,.

1) Why Do We Design Correlation Analysis to Assess Influ-
ences Among Measurements: Modeling the influence of w¢, .
is inherently complex due to its dynamic nature, which is af-
fected by various factors, including sampling interval, airflow,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 9, SEPTEMBER 2025

vehicular speed, and fluctuations in true gas concentration.
This complexity results in correlations among measurements,
exhibiting non-stationary and non-Markovian characteristics. A
prevalent methodology for temporal feature extraction in time
series analysis is correlation analysis, which can be employed to
derive coefficients that elucidate the unknown influences within
a measurement sequence. These correlation coefficients can be
iteratively trained under labeled supervision to progressively
approximate the actual wg, and we, .

2) Why Do We Adopt Self-Attention Weights for Correlation
Analysis: Inspired by the self-attention mechanism in BERT,
the self-attention weights «v, in AirBERT gather bidirectional
information from multiple previous sensor measurements to
model contextual correlation. The self-attention mechanism pro-
vides three advantages. First, it models long-term dependencies
in sensor measurements beyond adjacent time steps. Second,
it considers the contextual correlation throughout the entire
sequence without length limitations. Third. it calculates the
correlation between every two sensor measurements, enabling
the capture of extensive temporal features.

3) Why do We Use Dot-Product to Calculate Attention
Weights: In the linear signal space formed by all possible sensor
measurements, the dot-product serves to measure the similarity
between two vectors, effectively assessing the correlation be-
tween two sensor measurements. Additionally, the dot-product
exhibits linear time complexity, suggesting the model’s potential
for on-board implementation.

C. AirBERT Structure

AirBERT, a BERT-based representation learning model, ef-
fectively captures the contextual correlations among sensor
measurements. As depicted in Fig. 5(b), the model architecture
commences with a multi-layer perceptron (MLP) serving as a
trainable embedding module, which maps the original measure-
ments C within a time window § to a hidden representation
E € R%*?, where d denotes the dimension of the hidden em-
bedding. A trainable positional encoding module subsequently
processes this hidden embedding, yielding H, which retains the
positional information of C'. Following this, K attention-centric
blocks take H as input and produce the output F. Ultimately,
another MLP, augmented with layer normalization, transforms
the representations into the estimated results.

® Attention-enteric Block: Each attention-enteric block en-

compasses a multi-head self-attention module and a feed-
forward module consisting of multiple MLP layers. In this
work, K is setto 2. Itis worth noticing that 2 residual blocks
are adopted in each attention-enteric block, which can
improve the depth and the expressiveness of the network
effectively.

® Cross-layer Parameter-sharing Mechanism:

The mechanism aims to improve parameter utilization
efficiency, thereby alleviating computational overhead.
Specifically, only the parameters of the first attention-
centric block need to be trained, while the other attention-
centric blocks share the same parameters from the first
block. This means that, despite the model consisting of
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multiple attention-centric blocks, the number of parame-
ters is significantly reduced, which in turn substantially
lowers computational complexity. Through this approach,
the Cross-layer Parameter-sharing Mechanism effectively
reduces the computational resources required during both
training and inference, while preserving the model’s ex-
pressiveness and performance.

V. PROMPT-INFORMED TRAINING STRATEGY
A. Observation

City-scale air quality mobile sensing requires sensors to cover
the entire city. However, there exists very little ground truth
data due to the sporadically distributed air quality monitoring
stations. Coincidentally, in NLP tasks, many corpus data are also
unlabeled due to privacy concerns, and the time and financial
costs of manual labeling.

Fortunately, the self-supervised learning (SSL) method is pro-
posed to solve the challenge of limited ground truth by learning
features from unlabeled data in advance, which has been verified
to bring significant performance gains on many challenging
downstream tasks [29], [30], [31], [32]. Specifically, based on
the characteristics of the final task, SSL designs a pretraining
task and generates data-label pairs from massive unlabeled data
to pretrain a model. The model is then fine-tuned to adapt to
the downstream task with limited labels, combining the learned
knowledge during pretraining.

Official air quality monitoring stations generally assess pol-
lutant concentrations at specific sites. According to the United
States Environmental Protection Agency, these stations are
strategically located near representative urban areas, including
high-traffic roads, city centers, and sites of particular concern,
such as schools and hospitals, to support human health objec-
tives. Our objective is to estimate fine-grained air quality across
the city, leveraging the benefits of SSL. To this end, we propose
a Prompt-informed Training Strategy based on representative
areas to enhance the estimation performance of AirBERT.

B. Training Strategy Design

In Fig. 6, we provide a detailed explanation of the Prompt-
informed Training Strategy for AirBERT. During the self-
supervised pretraining phase, we design a masked language
model (MLM) task, in which sensor measurements at the city
scale are randomly masked, and these masked values are treated
as generated labels. By incorporating geographic information,
AirBERT effectively learns the spatio-temporal dependencies
between the unmasked sensor measurements, which typically
exhibit significant temporal stability. This allows AirBERT to
transfer geographic knowledge to accurately recover the masked
values, thereby capturing the patterns of urban pollutant distribu-
tion and adapting to different urban environments. In the subse-
quent supervised prompt learning phase, we fine-tune AirBERT
based on the pre-trained model and a small amount of label
information from monitoring stations, transferring the learned
mappings from areas with existing monitoring stations to regions
lacking monitoring stations. During this phase, we introduce the
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Fig. 6. Prompt-informed training strategy.

Auto-Prompt model, which further enhances AirBERT’s ability
to distinguish mixed gas concentrations and estimate true values.
The tokens generated by Auto-Prompt serve as prompts to
fine-tune the pre-trained decoder, thereby facilitating AirBERT’s
learning of the mapping between sensor measurements and
ground truth values. This approach improves predictive accuracy
while maintaining operational flexibility.

1) Why do We Design the MLM Task as the Pretrain Task:
Our downstream regression task aims to estimate the real value
R;. As a more versatile pretraining task in NLP, MLM helps
a language model predict masked tokens by understanding the
word meaning based on contextual information, which allows
the model to learn more fundamental but crucial language
representations and better adapt to multiple downstream tasks.
Considering the similarity between R, estimation and tokens
prediction, we design the MLM task to compel AirBERT to
extract more underlying spatial and temporal correlation among
sensor measurements and transfer the learned knowledge to
recover masked values.

2) What Features Can AirBERT Learn in the MLM Task:
From massive sensor measurements collected over a long pe-
riod, AirBERT learns the general time- and spatial-invariant
knowledge among measurements. Specifically, AirBERT can
obtain statistical characteristics such as variance and range
from a stationary sequence. It indicates the sensor noise level
and can evaluate the fluctuation of measurements. Combining
geographic information, AirBERT can learn the spatial variation
pattern of air pollutant concentrations. Notably, these features
often exhibit significant temporal stability.

3) Why Can the Prompt-Tuned Model Be Generalized to City-
Scale Deployment: City-scale sensor measurements demon-
strate a higher spatial density compared to ground truth data
obtained from scattered monitoring stations. During the self-
supervised pretraining phase, AirBERT effectively captures in-
tricate spatial correlations among sensor measurements across
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diverse urban areas. In the subsequent supervised prompt learn-
ing phase, AirBERT acquires the mapping relationship between
sensor measurements sampled in proximity to monitoring sta-
tions and their corresponding ground truth values. Consequently,
when deploying the prompt-tuned AirBERT in regions lacking
monitoring stations, it can transfer the learned mapping relation-
ship from nearby stations to these areas, facilitating accurate true
value estimations.

4) Why do We Design Auto-Prompt During the Prompt-
Learning Phase: During the pretraining phase, AirBERT eluci-
dates the spatial variation patterns of air pollutant concentrations
derived from sensor measurements. However, our downstream
task necessitates the estimation of true values R;. Consequently,
the primary objective of the prompt learning phase is to guide the
pre-trained model in generating the desired outputs. Given the
scarcity and underutilization of labeled data in practical appli-
cations, we have developed the Auto-Prompt model. This inno-
vative approach leverages minimal labeled data and pre-trained
feature embeddings to generate efficient prompts, thereby en-
hancing AirBERT’s precision and performance for the down-
stream task. Notably, as the prompt learning phase introduces
new input features that modify dimensionality, Auto-Prompt’s
design circumvents the need for adjustments to the pre-trained
AirBERT architecture, ensuring enhanced adaptability.

C. Phasel: Self-Supervised Pretraining

In this phase, we design an MLM mission to help AirBERT
learn spatial and temporal correlation among sensor measure-
ments. The MLM task randomly masks multiple pieces in mea-
surement sequences. Then, the pretrain model learns to recover
the masked values with adjacent unmasked readings.

1) Pretraining Model: The pretraining model consists of a
representation extractor as an encoder and a knowledge-transfer-
based predictor as a decoder. The decoder reconstructs the
masked readings with representations generated by the encoder.
Additionally, the MLM mission is treated as a regression task.
Thus, the loss function is defined as the mean squared error
(MSE) between the original readings and reconstructed values
at masked positions.

2) Mask Policy: To enable AirBERT to recover the masked
readings considering longer temporal dependency, we randomly
mask more sensor measurements in a sequence, which provides
a more challenging condition for AirBERT to learn the spatial
variation trend of air pollution. The original MLM task in BERT
masks only one token in a text sequence since many words
have independent meanings [33]. However, in our question,
AirBERT may easily degrade to copy neighbor readings as the
output if masking only one position, since it may overly focus
on specific positions and neglect other readings. An input with
high-proportion masked pieces can provide a more challenging
task to train an effective model.

D. Phase2: Supervised Prompt Learning

In this phase, Auto-Prompt initially derives more refined
prompt tokens by leveraging representations produced by the
pre-trained decoder and minimal labeled labels. These tokens are
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subsequently employed to train a novel decoder. The process is
supervised by the ground truth. Prompt-informed Training Strat-
egy is designed with minimal trainable parameters, effectively
adapting to downstream tasks.

1) Auto-Prompt: Auto-Prompt is a high-level architecture
that takes feature sequences extracted by the encoder and a
minimal set of labeled tags to generate more informative tokens.
Its primary advantage lies in its plug-and-play nature, allowing
the network to learn new knowledge without altering the existing
encoder and decoder structures. In our experiments, we em-
ployed a combination of random interpolation and a multilayer
perceptron (MLP) structure for Auto-Prompt.

2) Many-to-Many Mapping Scheme: The input and output
in this phase are sequences. Both recent past and close future
measurements are included in the input sequence. Compared to
one-to-one mapping [34], this many-to-many mapping scheme
employs features of temporal correlation and dependency pro-
vided by the historical and future measurements, which helps
achieve better results. [35].

3) Prompt Learning Model: As illustrated in Fig. 6, the fine-
tuning model exhibits 3 key distinctions from the pretraining
model. First, freeze the encoder of AirBERT and train only
the decoder using limited ground truth data from the stations.
Second, we develope an Auto-Prompt mechanism, conceptu-
alizing prompt tokens as time-variant latent variables and task
labels as observed variables influenced by these latent variables.
This approach enables the derivation of context-specific prompt
tokens tailored to diverse input sequences by leveraging minimal
labels and embeddings from extracted representations. Third,
we introduce a time-average operation within the decoder to
enhance data utilization, allowing overlap between two data
samples, which results in multiple updates for each sensor
measurement. To estimate gas concentration at the sampling
time 1, the time-average module computes the average of all
estimated results updated for ¢; at each time step, as depicted
in the red dashed box in Fig. 6. The loss function is defined as
MSE between the estimated results and the ground truth. Upon
completion of training, the prompt-tuned model can be deployed
onboard for real-time air quality estimation.

VI. SENSING FRONT-END

To evaluate the effectiveness of the CatUA, we delicately
design a Sensing Front-end to collect mobile air quality data
under a high sampling rate in the real world.

A. Why Do We Design Our Sensing Front-End

Most mobile monitors lack specific structural optimiza-
tion, which deteriorates their sensing performance under high
sampling rates. For example, Libelium [36], MSB [37], and
Gotchall [38] expose sensors in the air directly or just encapsu-
late sensors in a box. They lack solutions to solve the gas-mixing
challenge in high-mobility sensing. Consequently, we design our
own CatUA Sensing Front-end. The workflow and hardware
implementation are shown in Figs. 7 and 8(a).
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Fig. 7. Components and workflow of the CatUA sensing front-end.
TABLE 1
SYSTEM PARAMETERS OF CATUA SENSING FRONT-END
Parameter Value Parameter Value
195.0x134.0 .
Volume <82 Omm?> Humidity 5% ~ 90%
Mass 2500¢g Voltage DC 9 ~ 36V
Temperature 20°C~60°C Fsamph"g 0.3 ~ 1Hz
requency
Power Air Pump .
Consumption 10w Flow Rate 600ml/min
PM Chamber 77.2%x67.2 CO Chamber radius=10.3mm
Specification x34.0mm? Specification height=23.8mm
03/SO2/NOs  radius=16.3mm  VOCs Chamber  radius=11.5mm

Chamber Size

height=23.8mm

Specification

height=28.6mm

During operation, the Sensing Front-end is installed on a
mobile device, enabling continuous sampling along the trajec-
tory at a frequency of 0.3 Hz. Operating at speeds between
45 and 60 km/h, it achieves a spatial resolution of under 50
meters. This high-resolution data collection ensures that the
sensor captures feature patterns across a relatively complete
spatial range, thereby enhancing the overall accuracy.

B. How Does the Sensing Front-End Work

The measurement process encompasses four stages: air pump
inhaling gas into reaction chambers, gas diffusing into the EC
sensor, gas reacting on the electrode surface, and electric signals
mapped into concentration values. Initially, AR9331 sets the air
pump flow rate to 600 ml/min and the sampling rate to 1 Hz.
The air pump sequentially draws external gas into each reaction
chamber at a constant airflow. Subsequently, gas molecules
permeate the sensor due to the gas concentration gradient.
Then, gas molecules react on the electrode surface, generating
analog electrical signals transmitted to the central processor. The
processor further de-noises and amplifies the electrical signal.
After mapping the signal into gas concentrations, the real value
is estimated online. All system parameters with specific settings
of the Sensing Front-end are detailed in Table I. In addition, the
mechanical structure plays an important role in sensing quality
enhancement under high sampling rates. Specifically, compared
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to other devices, we consider both cavity size and airflow path
in structure design, as shown in Fig. 8(b).

In the context of city-scale sensor deployments (e.g., thou-
sands of sensors), the independent chambers and active airflow
design of the Sensing Front-end effectively mitigate interference
from mixed gases (see Fig. 8(b)). This design ensures that,
even in complex environments, the sensor data remains highly
accurate and reliable. Moreover, to address the computational
load and signal interference caused by the simultaneous opera-
tion of thousands of sensors, the Sensing Model in the Sensing
Front-end adopts a hierarchical transmission architecture (see
Fig. 7). Specifically, each sensor first uploads its measurement
data to a local gateway via WiFi, which then transmits the
data to the cloud via a 4 G network. This hierarchical design
effectively reduces the burden on the cellular network, while
minimizing signal interference through WiFi. To further opti-
mize communication performance and resource utilization, the
Sensing model dynamically allocates bandwidth based on data
priority (e.g., labeled vs. unlabeled data), ensuring efficient data
transmission.

C. Separate Chamber Design

We assign separate reaction chambers for each gas and design
the cavity size and shape for each sensor encapsulation in the
front-end, as the red regions shown in Fig. 8(b). Compared
to devices putting all sensors in a common space, separate
chambers significantly diminish the gas-exchanging interval
which is a key component of diffusing time. This design helps
alleviate the gas-mixing challenge at its source. Additionally,
sealing rings are also used to avoid sensing errors due to gas
leakage.

D. Air Pump for Active Airflow

Airflow determines how fast gas molecules traverse reaction
chambers. Unstable airflow may change the pressure in the
device, causing errors in sensor measurements. Passive airflow
is susceptible to external environmental factors like wind [39].
Thus, we integrate an air pump to maintain a constant airflow
and stable pressure. As the blue arrows shown in Fig. 8(b),
after inhaled from the external environment by the pump, air
samples flow sequentially through the seven cascaded reaction
chambers until being discharged. Our Sensing Front-end com-
prises a modular and detachable array of gas sensors designed
to monitor air quality. This system quantifies six principal air
pollutants, following emission source guidelines established by
the U.S. Environmental Protection Agency (EPA) [40]. The
Sensing Front-end assesses concentrations of O3, SOz, and NO»
via Alphasense EC sensors (OX-B431, SO2-B4, NO2-B43F)
selected for their proven pre-calibration accuracy and stability
under diverse environmental conditions and gas concentration
variances. For PMy 5 and PM;o measurements, we employ
the Plantower PMS5003T sensor, which additionally provides
ambient temperature and humidity data. The VOCs levels are
monitored using the ION MiniPID2PPB sensor. The technical
details of these sensors are comprehensively listed in Table II.
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Fig. 8. Implementation of Sensing Front-end for Mobile Air Quality Data Collection.
TABLE 11
SENSOR SPECIFICATIONS OF THE CATUA SENSING FRONT-END
Sensor Gas Type Noise Range Sensitivity Tested Tyg
*10pg/m*@<100pg/m?* 5 50%-0.3um

PMS003T — PMas/PMio = jgg@> 100pg/ms  0-1000k&/m 98%-0.5m and Larger >60s
0X-B431 O3 +15ppb 0-20ppm -225~-550nA/ppm at 1ppm Og >60s
SO2-B4 SO, +5ppb 0-100ppm 275~475nA/ppm at 2ppm SO >80s
NO2-B43F NO, +15ppb 0-20ppm -175~-450nA/ppm at 2ppm NOo >40s
CiTiceL@4CM CcO +4ppb 0-2000ppm 70+15nA/ppm >30s
MiniPID2PPB VOCs - 0-40ppm >30mV/ppm >30s

E. How is the Sensing Front-End Used

The Sensing Front-end is typically mounted inside mobile
vehicles (e.g.in the trunk or on rear seats). To collect air samples
with a steady airflow, two thin flexible tubes are used to connect
the device with the external environment. Specifically, the two
tubes are used for suction and exhaust, respectively. One end of
each tube is connected to the air vent and the other end is secured
to the outer surface of the vehicle body through the window. In
addition, the GPS locator can be attached to the top of the vehicle
by means of a magnetic device to ensure the signal quality.

Due to hardware aging or other factors, sensors may ex-
perience signal drift after prolonged use. Therefore, we per-
form annual calibration of the sensors in the laboratory, up-
date hardware components, and provide reference measurement
bias values. The calibrated sensors continue to be installed
on mobile vehicles for data collection. Based on this, CatUA
further incorporates calibration from theoretical perspectives
using limited monitoring station labels to enhance the accuracy
of the measurement values.

VII. EVALUATION & RESULTS
A. Data Collection

We collected the fine-grained data in a representative inter-
national city for over 1200 hours. Our Sensing Front-ends were
deployed on a fleet of 15 vehicles traversing over 90% of diverse

urban areas, covering an area of over 1000 km?. The collected
data includes sampling time, positions, and observations on
volatile organic compounds (VOCs) concentrations, a prevalent
air pollutant associated with health risks.

It is worth noting that CatUA demonstrates strong cross-city
adaptability, which is attributed to the Prompt-informed Training
Strategy. Specifically, during the deployment of CatUA, Sensing
Front-ends are first installed on mobile devices to collect geo-
graphic information and pollutant concentration measurements
across most urban areas along the vehicle’s route. These data
are then uploaded to the cloud for training, enabling AirBERT
to learn and extract spatial features associated with different
geographic locations. Next, the pre-trained model is fine-tuned
with a small amount of monitoring station label data, allowing
for the estimation of true pollutant concentrations. Finally, the
trained model is deployed on edge devices for inference. As a
result, even in cities with different pollution patterns and sensor
distributions, CatUA can effectively mine the spatial features
from mobile measurements and transfer these features into the
mapping relationship between the measurements and monitor-
ing station labels, thereby significantly improving prediction
accuracy in most urban areas.

Observations of gas concentrations comprise Sensor Mea-
surements and corresponding Reference Data (ground truth).
Sensor measurements were collected by the front-end. Besides,
a mass spectrometer is also deployed on the same vehicle, as
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Fig.9.
vehicle.

Deployment of Sensing Front-ends and mass spectrometer on a mobile

shown in Fig. 9. The mass spectrometer can analyze the com-
position and structure of substances by measuring the mass-to-
charge ratio of charged ions using electromagnetic and electric
field effects. Thus, this device aims to quantitatively provide
fine-grained reference data. Both our front-end and the mass
spectrometer operated at a sampling rate of 1 Hz.

Fig. 10 illustrates the spatial distribution of our collected data
across 4 months. The air quality data always have high coverage
and resolution during various collection periods. Statistically,
the overall data resolution can be up to 1729.08/(km? - h ). The
spatial resolution could achieve up to 24.05m.

B. Experimental Methodology

1) Pre-Processing: First, we calculate the vehicular speed
with the sampling interval and the distance change between
adjacent sampling positions. Next, all input features are linearly
scaled to [0,1]. Then, we use a sliding window to slice the data
into sequence samples. In particular, the moving step of the win-
dow equals 1, which means there exists a 19-measurement over-
lapping between two adjacent samples. Each position will have
a higher probability of being masked, which aims to improve
data utilization and let the model learn how gas concentrations
vary at any time.

We partition the dataset into three distinct subsets: the training
set (60%), validation set (20%), and test set (20%). Within the
training set, we further divide the data based on the labeling
rate, resulting in a labeled subset comprising 1% and an unla-
beled subset constituting 99%. The extensive unlabeled subset
is utilized during the pretraining phase, enabling AirBERT to
acquire time- and spatial-invariant knowledge. Subsequently, the
labeled subset is used to train the prompt learning model through
supervised learning. Considering that in practical scenarios we
may have access to only a small amount of labeled data, 10% of
the labeled data is directly fed into the network, while 90% is
used for supervision. The validation set is integrated into the
model selection process, and the performance of the trained
model is ultimately assessed using the test set.

2) Training Details: The entire estimation module is imple-
mented using Python and PyTorch, and training is conducted on
a server equipped with four NVIDIA RTX A6000 GPUs (48 GB
memory) and an Intel(R) Core(TM) i7-11700 2.50 GHz CPU.
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We configure AirBERT with two self-attention heads and use a
single MLP layer with layer normalization as the knowledge-
transfer-based predictor. We also apply random interpolation
combined with a single MLP layer as the Auto-Prompt. The
Adam optimizer is employed to update the parameters of the
pre-trained model. In the multi-spot masking policy, the mask
ratio is set to 0.15. Additionally, the sequence length is set to 20.
During both pretraining and fine-tuning, the learning rate and
batch size are set to 1 x 107° and 128, respectively.

3) Models for Comparison: We compare the performance of
our CatUA with the following SOTA methods.

® Naive: No estimation is performed. Raw sensor measure-
ments are reported as the estimated results.

® MLR [41]: MLR maps over two variables to a reference
result, which is widely used for sensor calibration.

® RF[34]: Asanon-parametric estimation method, RF learns
nonlinear functions for air pollution state.

o SensorFormer (SF) [35]: As a sequence-to-sequence
model, SF uses both recent past and close future sensor
data. which has been validated to surpass other methods,
such as AirNet.

e AirNet [42]: AirNet introduces historical data sequences
from both mobile devices and reference static stations,
modeling the calibration of mobile sensors as a sequence-
to-point mapping problem.

4) Evaluation Metric: Our final goal is to minimize the devi-
ation between the results of model estimation and the real con-
centrations of air pollutants. Therefore, we adopt mean absolute
error (MAE) for performance comparison.

I,
MAE—;Z|J]—$|, (%)

i=1

where 7 is the length of a test sequence. £ and x represent esti-
mated results and reference measurements for the ith element,
respectively. As a common metric to assess sensing precision,
MAE can evaluate the effectiveness of a model.

C. Sensing Front-End Validation

We first validate the performance of CatUA Sensing Front-end
in air quality data collection. We deployed 2 front-ends with
the same configurations in the lab and on a moving vehicle
sequentially for in-lab static sensing and outdoor mobile sensing,
respectively. In particular, we set 3 VOCs concentration levels
for the in-lab test to simulate the possible pollution levels in real
environments. Fig. 11 depicts the great consistency between 2
front-ends. Moreover, the average relative error of the in-lab test
is 0.04 which is rather low. The detailed CDF is shown in Fig. 2.

D. Overall Performance

Fig. 12 illustrates the performance comparison between the
proposed CatUA and three baseline models for VOC concen-
tration estimation. The cumulative distribution function (CDF)
underscores the superior effectiveness of CatUA, which con-
sistently outperforms all baselines. CatUA achieves an average
MAE of 5.74 pg/m3, representing a 96.9% reduction in error
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Fig. 10.  Spatial distribution of data density collected by CatUA sensing front-end over 4 months.
28 We normalized all Naive MAE values to 1 and used the normal-
26 ized MAE as the evaluation metric. As demonstrated, CatUA
§ %,; 4 Fiting Result consistently outperforms other baselines across all pollutant
g % 2 M, - 0.989M,+0.032 types. Specifically, CatUA outperforms the SOTA SF by 37.6%
= " for PMs 5, 45.3% for PM;g, 69.0% for NO,, 70.4% for SO,
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Measurement of system 1 59.2% for CO, 16.6% for Os3. .
2) Impact of Sampling Rate: We then evaluate the effective-
Fig. 11. Consistency validation between 2 devices with the same configura- ness of CatUA by sampling VOCs concentrations at varying
tion. data rates. The results are presented in Fig. 13(b). As shown,
CatUA consistently outperforms the other three baselines across
107 S N all sampling rates. Specifically, as the sampling rate increases
de - from 0.01 Hz ~ 1Hz, CatUA’s MAE rises from 6.63 pg/m3 to
' A S 9.09 pug/m?, and then drops to 5.74 pg/m3. This behavior can be
AirNet . .
0.6 = Cuva explained as follows: At lower sampling rates, the gas sampled
A has sufficient time to fully react inside the EC sensor before
“ 0.4 the next sample enters, leading to a lower chance of gas mixing
and, consequently, lower measurement error. At higher sampling
0.2 rates, the effect of gas mixing inside the sensor becomes more
00 100 200 300 400 500 pronounced. However, the increased data availability allows
"0 20 40 60 80 100 120 CatUA to learn more temporal and spatial-invariant features
MAE(pg/m?) from a large amount of unlabeled data, and more labeled data
helps further fine-tune the model. Similar trends are also ob-
Fig. 12. Estimation performance comparison of CatUA and baselines with

1 Hz sampling rate, which is shown in CDF. The labeling rate is 1%, which
means only 1% of the labeled data is used to train models.

compared to the Naive approach (185.22 pg/m?). Moreover,
CatUA surpasses the state-of-the-art (SOTA) method SF by
42.6%, outperforms AirNet by 47.8%, exceeds RF by 63.5%,
and outperforms MLR by 83.6%. Furthermore, we assess the
model’s effectiveness across diverse scenarios, including differ-
ent air pollutant types as well as varying sampling and labeling
rates.

1) Effectiveness for Various Pollutants: We conducted ex-
tensive experiments using data from six common air pollutants
collected by our Sensing Front-end to evaluate CatUA’s per-
formance in complex environments. These pollutants include
PMs 5, PM;g, NO2, SO2, CO, and Og, as shown in Fig. 13(a).

served for RF and SF.

3) Impact of Labeling Rate: We further investigate the ef-
fect of the labeling rate, which defines the ratio of labeled to
unlabeled data used to train CatUA. As shown in Fig. 13(c),
when the labeling rate decreases from 10%~0.1%, the MAE
of CatUA increases from 5.62 pug/m? to 8.41 pg/m3. A similar
trend is observed for the other three baseline models. Moreover,
CatUA consistently outperforms the baseline models across all
labeling rates, with particularly notable performance gains at
lower labeling rates.

E. Ablation Study

We then experimentally analyze some core components of
CatUA, and particularly, the performance gains that each of them
brings into the overall system.
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Fig. 14. Influence of pretrain encoders shown in CDF. The labeling and
sampling rates are 1% and 1 Hz.

1) Impact of Pre-Train Encoder: In this section, we demon-
strate that the proposed AirBERT model outperforms other pre-
trained encoders in the estimation task. Specifically, we compare
the AirBERT framework with three other encoder architectures:
Long Short-Term Memory (LSTM) [43], Gated Recurrent Unit
(GRU) [44], and Multilayer Perceptron (MLP). As shown by
the CDF in Fig. 14, CatUA with AirBERT achieves a lower
estimation error compared to the baseline models. AirBERT
improves estimation accuracy by 18.0% over GRU, 68.3% over
LSTM, and 74.2% over MLP on average.

2) Impact of Prompt-Tune Decoder: In this part, we com-
pare the estimation performance using different prompt-tuning
decoders during the supervised learning phase. Specifically, we
replace the MLP layers in the CatUA Predictor with three alter-
native decoder structures: Gated Recurrent Unit (GRU), multi-
head attention (ATTN) [45], and Long Short-Term Memory
(LSTM). As shown in Table III, CatUA with MLP achieves an
average improvement of more than 8.3%, 24.0%, and 10.0% over
GRU, ATTN, and LSTM, respectively, across all labeling rates.
However, compared to the improvements seen with pre-trained
encoders, the performance gains for the fine-tuned decoders are
less significant.

3) Impact of Auto-Prompt: In this section, we demonstrate
the performance gains achieved during the prompt learning
phase by incorporating the Auto-Prompt module. Specifically,
we compare CatUA with its variant AirBERT-no AP, which omits

shown in MAE(ug/m3).

Estimation performance comparison of CatUA and baselines under different sampling rates and labeling rates. Our model can also be expanded to

TABLE III
PERFORMANCE COMPARISON OF CATUA WITH DIFFERENT PROMPT LEARNING
STRATEGIES, MEASURED IN MAE (pg/m? )

Moda IRV 01% 05% 1% 2% 5%  10%

CatUA | 728 578 574 552 516 646
AIfBERT.GRU | 646 632 687 648 623 688
AfBERTATTN | 738 753 627 793 988 834l
AIfBERTLSTM | 811 632 634 639 638 642
AifBERT-n0AP | 770 608 606 583 559 675

Sampling rate: 1Hz. LR indicates labeling rate.

Zsf
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Fig. 15. Impact of sequence length with 4 prertain encoders. The labeling and
sampling rates are 1% and 1 Hz.

the Auto-Prompt module. As shown in Table III, CatUA consis-
tently outperforms AirBERT-noAP by an average of 5.4% across
all labeling rates. This result demonstrates that Auto-Prompt
effectively enhances the network’s adaptability to downstream
tasks.

F. Micro-Benchmark

To further explore the effectiveness of AirBERT in repre-
sentation extraction, we conduct micro-benchmark experiments
to inspect CatUA and evaluate its sensitivity to various system
settings in the self-supervised training phase.

1) Impact of Sequence Length: As shown in Fig. 15, the
performances of all methods tested are not positively related
to the sequence length. The reasons are as follows. First, longer
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Fig. 16. CatUA performance shown in MAE(ug/m? ) under different repre-
sentation dimensions and mask ratios. The labeling and sampling rates are 1%
and 1Hz.
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Fig. 17.  Attention maps of head 0O (left) and head 1 (right) of CatUA. Head
0 concentrates more on current readings and near-future readings, while head 1
pays more attention to recent-past readings.

measurement sequences may increase the model complexity,
probably causing over-fitting and yielding high estimation error.
Second, when ground truth is limited, the increase in sequence
length corresponds to fewer labeled samples, which may cause
the severe issue of label scarcity in the supervised training
process. Thus, longer sequences do not always yield lower
estimation errors for tested models.

2) Impact of Masking Policy: As shown in Fig. 16, span
masking with a higher ratio results in lower estimation error
compared to lower masking ratios. This indicates that masking
more positions can be beneficial for effective representation
learning from sensor data. The setting of 7, = 0.3 achieves
the best overall performance, and thus, we adopt it in CatUA.

3) Impact of Representation Dimension: We further inves-
tigate the impact of the representation dimension (RD) on
CatUA’s performance. After self-supervised training, AirBERT
generates representations across various dimensions, ranging
from 18~144, with the corresponding estimation errors shown
in Fig. 16. Overall, MAE decreases from 10.08 ug/m? to
6.81 pg/m? as the dimension increases from 18 to 36, but
rises again to 9.27 ug/m3 at a dimension of 144. This behavior
can be explained by the relationship between representation
dimension and the computational complexity of CatUA. While
higher dimensions can improve the model’s fit to the data, they
also increase the risk of overfitting, creating a classic trade-off.
Additionally, larger dimensions negatively affect the efficiency
of CatUA on edge devices. Based on our experimental results,
we set the representation dimension to 36, which offers the best
performance.

4) Attention Map Visualization: To better understand how
CatUA works, we examine the learned attention maps of 2 heads
in AirBERT, to get an idea of the area the model is focusing on
when processing a measurement sequence. The result is shown
in Fig. 17. At each moment, both 2 heads focus on the sensor
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TABLE IV
COMPUTATION EFFICIENCY COMPARISON OF CATUA AND BASELINES IN 4
ASPECTS

Model Parameters Size Train Time Infer. Time
CatUA 10.9K 56KB 13.7ms 44.9ms

SF 5.6K 35KB 7.5ms 110.4ms

RF 34K 388KB 32ms 1.7ms
MLR 0.003K 94KB 3.9ms 0.36ms

measurement generated at this moment. Moreover, head 0 also
pays attention to the close future readings, which is shown in
the brighter area below the diagonal. In contrast, head 1 assigns
larger weights to the recent past measurements. The result shows
that both recent past and close future sensor measurements
can provide extra information for reference during SSL to help
train effective CatUA which can achieve accurate results in the
downstream estimation task.

5) Computation Overhead: As a reminder, compared to ex-
isting model- and learning-based methods, CatUA can be de-
ployed on commercial edge devices without significant resource
overhead. Table IV compares CatUA with baseline methods
in terms of computational efficiency. As shown, the AirBERT
model in CatUA has 10.9 K parameters and a model size
of 56 KB. With the support of the Prompt-informed training
strategy, the training time is 13.7 ms, and the inference time is
44.9 ms. To further reduce the computational burden on edge
devices and improve real-time inference speed, CatUA uploads
measurement data to the cloud for continuous training. The
trained and optimized model is then deployed on the edge device
for inference, thus ensuring real-time performance while main-
taining computational efficiency. Specifically, the inference time
is the execution time to infer one sample (20 sensor readings) on
aRaspberry Pi (4 Model B with quad-core Cortex-A72 processor
and 4 GB RAM). All results are the average of 1000 repeated
experiments. As seen, the inference time of CatUA is less than
half of that of SOTA SF, although CatUA has a longer training
time due to extra pretraining. Moreover, compared to the model-
based methods, the size of CatUA is reduced as well thanks
to the cross-layer parameter-sharing mechanism. These results
indicate the lightweight CatUA can achieve real-time estimation
efficiently when deployed on edge devices with high sampling
rates. Although CatUA incurs slightly more parameters than
some other methods, the overhead is affordable for most mobile
air quaility sensing scenarios.

When deploying CatUA on resource-constrained edge
devices, the following three optimization strategies can be con-
sidered to further reduce the model size. Pruning: By remov-
ing less important neural network parameters, pruning effec-
tively reduces both the model size and computational load.
Quantization: Converting the model’s floating-point weights
to lower precision (e.g., 8-bit integers) not only reduces stor-
age requirements but also accelerates computation. Knowledge
Distillation: Transferring the knowledge from a large model
to a smaller student model helps to reduce computational and
storage demands while maintaining high prediction accuracy.
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Fig. 19. Application2: Power BI platform for city-scale pollution sources
monitoring.

These optimization strategies can effectively lighten the load
on edge devices while enhancing the overall performance of
the system. FPGA Acceleration: Leveraging FPGAs to design
custom parallel processing architectures tailored to the specific
computational patterns of AirBERT, which can substantially
reduce latency, improve energy efficiency, and further optimize
real-time inference performance on edge devices.

VIII. APPLICATIONS

Based on the CatUA, we developed an application to col-
lect air quality data at an urban scale. Furthermore, we ex-
plore pattern mining of the temporal and spatial distribution of
pollutants.

A. Application Development

Thanks to the outstanding performance of CatUA, we develop
applications with the collected city-scale data. We introduce two
applications facing different users, as shown in Figs. 18 and 19.

1) Individual WebApp: Residents can access daily weather
and AQIs of the entire city from the Individual WebApp. These
data help users decide daily dress and whether it is suitable
for travel. Additionally, the air pollution distribution at the
hundred-meter scale can also be visualized. These data help
citizens arrange travel routes effectively to avoid high-pollution
areas and improve their travel experience. As of April 2023,
Individual WebApp has accumulated 850 users.

2) Power BI Platform: Regulators can obtain a city-scale
heatmap of air pollution through a BI visualization platform.
The real-time spatial distribution of major pollution sources is
available to help regulators infer the cause of pollution. There are
mainly three procedures for source and causal prediction. First,
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we use the CatUA Sensing Front-ends deployed on vehicles
to collect air pollution concentrations at a certain sampling
rate. Then, with the collected data, we employ gaussian pro-
cess regression (GPR) model to infer the concentrations of
uncovered positions and reconstruct the continuous air pollution
field. Finally, we take meteorological data into consideration
to infer and capture the air pollution source and position. To
ensure the precision of the inference process, we also combine
video streams from urban cameras. Fig. 19 provides an example.
The red parts in the northern area refer to areas with high O3
concentrations started from 11:00 on May 1st. Local camera
footage shows that non-standard construction is the main reason
causing air pollution.

B. Pattern Mining

The developed applications have been deployed in multiple
cities. Next, we explore pattern mining of the temporal and
spatial distribution of pollutants.

1) Small-Scale Pollutant Activity Captured by Mobile Sens-
ing (Pattern 1): In the same region, both mobile and stationary
sensors exhibit similar general trends, including slow-changing
and low-frequency components. However, during movement,
the mobile sensors equipped with the CatUA model are able
to detect distinct pollutant peaks more accurately, which cor-
respond to small-scale pollutant activities that are typically
difficult for stationary sensors to capture, as shown in Fig. 20(a).
These pollutant peaks generally last for less than 3 minutes.
Considering the common movement speed of sensors (10 to
20 km/h), the spatial scale of these pollutant activities typically
affects an area of several hundred meters. By extracting these
pollutant peaks and categorizing them as pollution events, their
spatial aggregation can be analyzed to further identify pollution
hotspot areas, as shown in Fig. 20(b). These characteristics
highlight the robust performance of CatUA in handling sudden
pollutant spikes and extreme environmental conditions, demon-
strating its efficiency and accuracy in dealing with rapidly chang-
ing, small-scale pollutant events. This provides solid experi-
mental validation for evaluating CatUA’s robustness in complex
real-world scenarios.

2) Significant Seasonal Characteristics of Single Pollutant
Activities (Pattern 2): By aggregating and analyzing pollution
events, the intensity of a specific pollutant’s activity over a period
of time can be assessed. Based on the bus-mounted sensor system
deployed in Changshu City, Jiangsu Province, China, the spatial
distribution of PM5 5 pollution events during the morning and
evening rush hours was examined in the first and third quarters
of 2023. The key finding is that pollutant activity in the first
quarter (winter and spring) was significantly more active than in
the third quarter (summer and autumn), as shown in Fig. 21(a)
and (b).

3) Spatial Distribution Correlation of Associated Pollutant
Activities (Pattern 3): In the bus-mounted sensor system de-
ployed in Changshu City, Jiangsu Province, China, both PMs 5
and PM; sensors were installed. A comparison of the spatial
distribution of hotspot areas for both pollutants during the morn-
ing rush hour in the first quarter of 2023 was conducted, as shown
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(b) The trajectory of the two moving sensors, with
the red circle indicating the location where the
peaks gather more frequently.

(a) The morning peak of PMga 5 in the first (b) The morning peak of PMgz 5 in the third (c) The morning peak of PMjo in the first

quarter of 2023. quarter of 2023.

Fig. 21.

in Fig. 20(a) and (c). The key findings and explanations are as
follows:

a) Correlation: There is a significant spatial correlation
between the two pollutants. PMs 5 and PM, typically appear
together, and their concentrations show a positive correlation.
When one pollutant is generated, the other is often produced
simultaneously.

b) Differences: Although the concentration of PMyq is
generally higher than that of PMs 5, when measuring pollution
activity through pollution events, PM exhibits lower frequency
and smaller hotspot area coverage compared to PMs 5. A key rea-
son for this is that dust suppression measures, such as watering,
are commonly applied in the area to reduce localized pollution
activities. These measures have a more significant impact on
PMj than on PMs 5, suppressing the activity of PMjo while
having little effect on the activity of PMs 5.

IX. RELATED WORK
A. Air Quality Sensing Systems

Most air quality sensing systems are designed for low-
mobility carriers or static scenarios [46], [47], [48], [49]. The
deployment cost is high for the hundred-meter-level data granu-
larity. Although many MCS systems with high-mobility sensors
have been proposed [38], [50], [51], [52], [53], significant de-
viations of sensor measurements still exist. Taking Sniffer4dD

quarter of 2023.

Spatial distribution of PM pollutants. The number indicates the frequency of events, and the color indicates the frequency.

and Gotchall [38] as an example, the hardware structure is not
carefully designed and they neglect the gas mixing effect under
high sampling rates. Thus, more elaborate cross-calibration is
required.

B. Air Quality Estimation Methods

Existing estimation technologies can be categorized as model-
based and learning-based methods. However, a precise model for
the defined problem is impossible to obtain due to the stochas-
ticity of individual drivers. Therefore, this vitiates the Gaussian
mixture model-based methods [54], [55], [56], non-parametric
methods [57], [58], and particle filter methods [53], [59]. Many
promising learning-based methods were proposed recently for
air pollution estimation. These methods rely heavily on reference
data from official stations [35], [42], [60]. However, the official
measurements are not representative due to the spatial sparsity,
leaving mobile sensors to perform without calibration. Thus,
these methods lack enough labeled data for supervised training.

X. CONCLUSION

In this paper, we introduced CatUA, the first fine-grained,
city-scale air quality estimation system utilizing mobile sensors
with high sampling rates. We developed AirBERT to handle spa-
tially mixed gas measurements through advanced feature extrac-
tion and mutual influence modeling. Additionally, we designed
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a Prompt-informed Training Strategy using Auto-Prompt, en-
abling CatUA to scale across cities with minimal labeled data.
Deployed in an international city, our system demonstrates a
96.9% reduction in sensing errors with a latency of only 44.9 ms,
surpassing the SOTA baseline by 42.6%. In future work, we plan
to integrate CatUA technology into flexible mobile platforms,
such as drones and robots [61], [62], [63]. By developing an
air-ground collaborative communication system [64], we aim
to enhance air quality monitoring capabilities in complex envi-
ronments, such as high-altitude regions and vegetated terrain.
The integration of this system will facilitate more precise data
acquisition, thereby further expanding monitoring coverage and
improving accuracy.
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