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Abstract—Streaming services have billions of mobile sub-
scribers, yet video piracy has cost service providers billions. Digital
Rights Management (DRM), however, is still far from satisfactory.
Unlike DRM, which attempts to prohibit the creation of pirated
copies, fingerprinting may be used to track out the source of piracy.
Nevertheless, existing fingerprinting-based streaming systems are
not widely used since they fail to serve numerous users. In this
paper, we present the design and evaluation of StreamingTag, ascal-
able piracy tracing system for mobile streaming services. Stream-
ingTag adopts a segment-level fingerprint embedding scheme to
remove the need of re-embedding the fingerprint into the video
for each new viewer. The key innovations of StreamingTag include
a scalable and CDN-friendly delivery framework, an accurate
and lightweight temporal synchronization scheme, a polarized and
randomized SVD watermarking scheme, and a collusion-resistant
fingerprinting scheme. Experiment results show the good QoS of
StreamingTag in terms of preparation latency, bandwidth con-
sumption, and video fidelity. Compared with existing methods, the
proposed three schemes improve the re-identification accuracy by
4-49x, the watermark extraction accuracy by 2.25x at most and
1.5x on average, and the recall rate of catching colluders by 26%.
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. INTRODUCTION

TREAMING is regarded as one of the most essential mobile
S applications. Mobile users are reported to spend dozens of
hours on it every month on average [1]. Copyright is crucial
in such a large market, as hundreds of thousands of jobs and
tens of billions of dollars in GDP are reported to be lost due
to video piracy [2]. Actually, anti-piracy strategies have been
extensively studied, among which the most widely used one is
Digital Rights Management (DRM) [3]. Major streaming service
providers such as Netflix and Hulu are all protected by a variety
of DRM technologies including Widevine [4], FairPlay [5], and
PlayReady [6]. Regrettably, DRM is not a panacea. Specialized
hardware is required on mobile terminals for DRM [7], [8], [9];
otherwise, software-only DRM might be compromised [10].
Besides, DRM alone cannot defend against all types of at-
tacks, such as screen recording with a camcorder. Some recent
methods [11], [12] prevent recording by exploiting differences
between the human visual system (HVS) and cameras, but they
either impose a heavy overhead on the client [11] or require in-
stalling special devices in the physical environment [12], thereby
reducing their applicability. Additionally, they are susceptible to
software-based screen recording.

One of the next-best ideas might be to track down and take
legal action against the pirate. Assume we can embed a unique
fingerprint into the content provided to each user. Once an illegal
copy is distributed, the distributor’s fingerprint (i.e., the pirate)
can be extracted and tracked. However, fingerprint embedding
onthe clientside is not feasible for large-scale deployment, while
embedding on the server side is not scalable due to the heavy
overhead of generating a uniquely fingerprinted copy for each
user. Therefore, this method is not widely used at the moment.

In fact, existing embedding techniques mainly focus on em-
bedding a relatively large amount of data, e.g., the fingerprint,
into every selected frame of the video. When it comes to
video streaming, however, this type of cumbersome embedding
schema is superfluous. Instead, by using a more lightweight
and low-density embedding schema, even though only a small
amount of data can be embedded in a single frame, sufficient
information to identify the pirate can still be extracted using all
of the frames. Based on this observation, considering a series
of frames selected for watermark embedding (denoted as “‘host
frames’ in this paper), we only encode a single bit into each
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host frame and prepare two versions of each host frame to repre-
sent bit ‘0" and “1” respectively. Then we can distribute different
series of host frames (mixed with the same non-host frames) to
different users with their unique fingerprints embedded.

Unfortunately, applying this naive approach faces many
challenges. (1) A framework compatible with nowadays’ mo-
bile streaming infrastructures is required. Today’s large-scale
streaming relies on caching-based Content Delivery Networks
(CDNs) to ensure a consistent level of quality of service
(QoS) [13]. However, existing fingerprinting systems are mostly
designed to compute offline, i.e., pre-processing the entire video
for every user, and so are not suitable for real-time streaming.
(2) A more reliable and confidential host frame identification
scheme is required. Traditional watermarking systems typically
identify keyframes as host frames, which could be detected
and destroyed by attackers through re-performing keyframe
detection. Besides, since bits are sequentially embedded into
consecutive host frames, even a single false re-identification in
the pirated video cannot be tolerated. (3) A lighter, more robust,
yet imperceptible embedding technique is required. Existing
watermarking algorithms based on singular value decomposition
(SVD) are designed to embed much data and have been proven to
be robust against single attacks. However, our scenario requires
less watermark capacity but robustness against composite at-
tacks. The complexity also needs to be reduced to process numer-
ous videos. (4) The collusion attack must be considered, where
attackers mix multiple copies and compromise the integrity of
the embedded fingerprint.

In this paper, we present StreamingTag, a novel piracy track-
ing solution intended for streaming services. To address the first
challenge, the video is divided into consecutive sections, and
two variants (with bit 0 and bit 1 embedded, respectively) are
generated from each section, using the digital watermarking
technique. For each user requesting the video, a fingerprint
is generated at run-time, and StreamingTag instructs users to
fetch the corresponding variant of each section in accordance
with their fingerprints (e.g., the user fetches the first variant
of the fifth video section if the fifth bit of the fingerprint is
0). In this manner, no modification to the mobile terminals
is required, and the variants of all video sections can still be
cached by CDNs to guarantee the QoS. To address the second
challenge, we randomly choose frames in the original video
as host frames and design a novel slidingDTW algorithm to
synchronize the pirated copy with the original copy, so that we
can re-identify the watermarked host frames in the pirated copy.
The slidingDTW algorithm is an optimized variant of existing
DTW algorithms [14], which can take raw videos (of several Ter-
abytes) as input and presents a linear complexity. With regard to
the third challenge, we propose a novel watermarking technique
that distinguishes the two variations dramatically by polarizing
their singular values in opposite directions and embedding the
same bit into multiple randomly-localized blocks. For the last
challenge, we use a collusion-resistant fingerprint code whose
security has been theoretically demonstrated.

The main contributions are as follows:

e \We propose a new video delivery pipeline to trace piracy

via fingerprinting, which is scalable, CDN-friendly, and
compatible with the existing infrastructures.
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e \We present a lightweight yet robust slidingDTW algo-
rithm, which improves the recall rate of host frame re-
identification by 4-49x more than traditional methods.

e \We propose a bipolar and randomized SVD-based water-
marking scheme, improving the extraction accuracy by up
to 2.25x compared to existing SVD watermarking while
incurring no additional costs.

e To defend against collusion, we employ a randomized
fingerprinting strategy and carefully select its parameters,
achieving a 26% higher recall rate than existing methods.

An early version of this work was published in [15]. The jour-

nal version comprises additional research, including the identi-
fication and verification of issues with existing keyframe-based
host frame identification methods in our scenario. It also entails
the design and evaluation of the novel slidingDTW algorithm.
The main symbols are summarized in Section A.1 of the online
supplementary material.

Il. BACKGROUND
A. Streaming and Live Streaming

HTTP-based streaming protocols, including HLS [16] and
MPEG-DASH [17], have been the de facto standard for stream-
ing. They require servers to split video streams into sequential
segments. Clients download a manifest file with URLs for each
segment and then request each segment.

Large-scale video streaming faces challenges due to the larger
size of video data compared to other HTTP-transferred data.
CDN s help alleviate this burden. [13] CDNs can be viewed as
a hierarchy of caches [18]. In a CDN-enabled system, client
requests are routed to a nearby CDN edge server rather than the
origin server. The edge server responds directly if the content
is cached, or fetches it from higher-level CDN servers or the
origin server before caching and responding [19]. CDNs greatly
boost content delivery in terms of scalability and latency, so
it is crucial to keep compatibility with CDNs while designing
StreamingTag.

B. Watermarking and Fingerprinting

Digital watermarking embeds watermark data into multime-
dia carriers such as photos [20], music [21], and video [22]. In
contrast, digital fingerprinting ensures that the embedded con-
tent is unique for each user so that we can trace back the piracy
source. When we use the term watermarking in this paper, we
mean the process of embedding invisible data into a video; while
fingerprinting refers to the process of encoding a user’s identity.
Besides, we refer to the video that has not been watermarked as
the original video, the legitimate video that is watermarked and
available to legitimate users as the watermarked video, and the
pirated copy which is also watermarked as the pirated video.

C. Keyframe Identification

As embedding a watermark into every frame [23], [24] can be
highly time-consuming and vulnerable [25], recent works [26],
[27] typically identify some keyframes, embed the watermark
into the keyframes, and then re-identify these watermarked
frames in the pirated video for watermark extraction. A frame
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is deemed as a keyframe if it indicates the start of a new scene
(i.e., its histogram difference from the preceding frame exceeds
the threshold). In these works, keyframes are always host frames
(i.e., frames with the watermark embedded), and vice versa.
Re-identifying watermarked frames in pirated videos merely
by the indices of their corresponding frames in the original video
is unreliable. For example, the pirated video may be transcoded
to a different frame rate. Also, frame dropping or duplication
in video players [28] may cause a difference in the number of
frames between the original and pirated videos. Therefore, the
same keyframe detection algorithm needs to be performed on
the pirated video to locate the watermarked frames. However,
keyframe re-identification can hardly be 100% accurate due to
the distortion of the pirated video. As a consequence, Stream-
ingTag will encounter a severe problem (see Section IV-A) if we
directly use keyframes as host frames. Therefore, we randomly
select some frames from the original video as host frames
and propose a synchronization scheme (detailedly discussed in
Sections 1V-B and IV-C) to pinpoint them in the pirated video.

D. SVD-Based Video Watermarking

SVD watermarking modulates the watermark information
into the singular values of uncompressed video frames. Since
the singular values reflect the intrinsic rather than the visual
characteristics of frames, embedding the watermark into the
singular values can achieve both high imperceptibility and
robustness [29]. The embedding stage of SVD watermarking
consists of the following steps:

e Step 1: The input video is decoded into a stream of
frames, some of which are identified as host frames. We
use the symbol r to represent embedding regions in the
host frames. Typically, the entire host frame is used as the
embedding region.

e Step 2: Every embedding region r is converted to the
frequency domain through some transform such as discrete
cosine transform (DCT) [30], discrete wavelet transform
(DWT) [31], or their combination [32], etc. Then the SVD
operation is performed on a sub-band at a certain frequency
(denoted as F(r)), i.e., F(r) = USVT, where S is a di-
agonal matrix consisting of singular values. Typically, a
sub-band at middle or high frequency is used in this step
to preserve imperceptibility.

e Step 3: The watermark matrix S, is modulated into
S through some operation such as matrix addition (i.e.,
St =S+ aSym, Where « is the watermarking
strength).

e Step 4: The frequency sub-band of the watermarked region,
F(r!,,.), is obtained by F(+,,.) =US!,, VT.

e Step 5: The watermarked region /. is obtained by trans-
forming F(r.,,,,) back from the frequency domain to the
spatial domain through the corresponding inverse opera-
tions, such as inverse DCT, inverse DWT, etc.

In the extraction stage, S.,, is extracted by performing

the above Step 1-2 again on the pirated video. To obtain the
embedded S, (which equals to M) S should also be

«

extracted from the original (i.e., unwatermarked) . Here we use
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Saqj extracted from the reference region r,4; (which is located
at the same position in the adjacent frame from the pirated video
and resembles » due to temporal redundancy) to approximate S,
as it gives better results.

To further improve robustness, one common method is to
repeatedly embed the same watermark data into multiple host
frames. The host frames can be randomly selected, e.g., using
a random sequence to determine their indices [31]. In this
paper, we use redundancy-enhanced SVD watermarking as our
baseline. In the Step 2 of our baseline, the 3-level DWT trans-
formation is used, and the H L3 sub-band (i.e., WX(J —3)
in [33]) isselected as F(r). The input is a video segment, thus the
baseline will be called m times to process a video consisting of
m segments. Only the luminance component of an embedding
region is used to improve the fidelity.

Ill. SYSTEM DESIGN
A. Threat Models

This paper focuses on two types of pirate attacks: the Naive
Redistribution and the Colluding Redistribution Attack.

Naive Redistribution (NR) Attack. In the NR attack, a single
attacker tries to re-distribute a pirated copy. The pirated copy
can be generated by downloading it from the streaming plat-
form or screen recording via a software-based recorder. In the
former case, the pirated copy may be further modified prior to
re-encoding and redistribution, through some common signal
processing operations (including scaling, Gaussian noising, and
median filter), so that the embedded watermark can be destroyed.
However, suchamodification is visually insignificant to preserve
the visual quality. The latter case resembles a composite of
decoding, scaling, and re-encoding. However, it is actually much
tougher, as video players may duplicate or drop some frames (as
noted in [28]) and we cannot simply locate host frames in the
pirated video merely through their indices.

Colluding Redistribution (CR) Attack. Several attackers col-
laborate by mixing different copies in the CR attack. For-
mally, the set of colluders is denoted as C' (with ¢ = |C]),
and for each colluder j € {1...c}, the delivered version of
segment ¢ is denoted as segment; ;. In this paper, we assume
that the colluders will randomly select a segment file from
{segment; 1,...,segment; .}, and the probability of select-
ing any segment file is 1. Colluders may prefer this collusion
strategy for two reasons: 1) Risk is fairly shared, so the maximum
degree of suspicion among all colluders is lowered; 2) Such a
strategy allows colluders to easily cooperate even if they do not
trust each other. After the selection, the attackers further make
minor visual changes to the selected segment file, similar to the
NR attack. Apparently, the NR attack is a special and the easiest
case of the CR attack.

B. Design Challenges

The system should employ fingerprinting to trace pirates.
However, three challenges must be overcome to handle the NR
attack, and the CR attack brings one more challenge.
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Fig. 1.  The workflow of StreamingTag.

e Challenge 1: As no modification should be applied to
mobile terminals for full compatibility, we should generate
all fingerprinted copies on the server side. This can com-
pletely negate the QoS improvement brought by CDNs,
which capitalize on the fact that multiple users make the
same digital content request. Besides, this can impose a
significant overhead on the server.

e Challenge 2: Video distortion incurred by the NR attack
can cause inconsistent detection of keyframes. As Stream-
ingTag embeds bits sequentially, a single inconsistent de-
tection can displace all the following extracted bits (de-
tailed in Section I\V-A). Additionally, skilled attackers can
also detect these watermarked frames and remove them.

e Challenge 3: Existing SVD watermarking techniques are
not insufficient. They are only proven to be robust against
single attacks, while a chain of attacks can occur in our
scenario (detailed in Section V-A). Besides, to support
large-scale streaming, the heavy cost of the key operation,
SVD, must be reduced.

e Challenge 4: The attackers can still be caught even if they
launch a CR attack to break down the fingerprint integrity.

C. System Overview

StreamingTag in a nutshell. The workflow of StreamingTag is
shown in Fig. 1. In the preparation stage, the input video is split
into segments of equal length, and two watermarked variants
of each segment are generated, with bit 0 and bit 1 embedded
respectively. Following this stage, approximately double-sized
video content is generated. Next, in the distribution stage, a
fingerprint code of length m (i.e., X; in Section VI-A) will be
generated for any user j requesting the video. Based on X ;,

StreamingTag creates a unique manifest file for user j, ensuring
that the 4th bit, Xj(.z), is embedded in the ith segment listed in the
manifest file. Consequently, different users are instructed to play
distinct copies, and the variants of segments form a bit-stream,
i.e., the user’s fingerprint, which can be used to track a user.
The accusation stage is the last stage. Once the video is illegally
distributed, we extract the embedded bits from each segment to
hunt out the attackers.

The preparation stage only needs to be performed once for
each video, so it introduces almost negligible cost. Besides, as
the variants generated in the preparation stage are directly served
to different users in the distribution stage, StreamingTag can sup-
port large-scale streaming by caching these variants on CDNs.
To summarize, StreamingTag effectively addresses Challenge 1
by its lightweight and CDN-friendly delivery pipeline.

Host Frame Identification (Section 1V). To overcome Chal-
lenge 2, we begin by randomly selecting certain frames as host
frames and secretly recording their indices in the preparation
stage. In the accusation stage, the pirated video is synchronized
with the original video on a frame-by-frame basis, enabling us
to pinpoint the host frames and extract watermarks. A novel
slidingDTW is adopted for synchronization.

Bipolar and Randomized SVD watermarking (Section V).
Facing Challenge 3, we consider the loose requirement on
watermark capacity in StreamingTag, and propose a more robust
yet more lightweight watermarking scheme.

Fingerprint generation and accusation (Section VI). To meet
Challenge 4, we employ a randomized collusion-resistant fin-
gerprint generation and accusation strategy. Fingerprint data
is stored in a database, and fingerprints extracted from pi-
rated copies are compared with stored fingerprints to identify
attackers.
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Fig. 2. A comparison of keyframe-based methods and slidingDTW. (a) The
performance of keyframe-based methods. (b) The performance of slidingDTW.

IV. HOST FRAME IDENTIFICATION
A. Robustness of Keyframe-Based Methods

Existing piracy tracing systems [26], [27] typically embed
the same watermark into multiple keyframes and integrate the
extracted watermarks to obtain the final watermark, by taking the
mode [26] or the average at every position. Such methods work
well in traditional systems, but they may fail in our scenario for
two reasons.

e Concern 1: Confidentiality of Keyframes. Keyframes can

be detected and removed by the attacker.

e Concern 2: Possible Displacement. The inconsistent de-
tection of keyframes can occur as the pirated video can
be slightly different from the original video under the
NR attack. Such inconsistency can be tolerated in exist-
ing systems [26], [27] as they integrate all the extracted
watermarks. However, in StreamingTag, bits are sequen-
tially embedded into host frames, and a single inconsistent
detection during extraction can displace all the following
bits. For example, denote the first keyframe in the original
video as f, and its corresponding frame in the pirated video
as f’. Assuming that the fingerprint is ‘101010°, it could
be falsely extracted as ‘01010 since f’ may be determined
as a non-keyframe in the extraction stage.

We conduct preliminary experiments to demonstrate the
severity of the two concerns. We randomly select five clips of
100 seconds from the third video in Table Il for the experiments.
To easily determine whether a detected keyframe in the pirated
clip corresponds to some keyframe in the original clip, we
pre-process the original clip by drawing a sequence number
on every frame of it via the drawtext filter in F F'mpeg [34].
The determination is made by comparing the sequence num-
bers. Then, in the pre-processed original clip, we compute the
luminance component histogram difference to detect keyframes.

A watermark is embedded into the chrominance compo-
nent of every keyframe through our watermarking scheme (see
Section V-B) to generate a watermarked clip. A pirated clip
is generated from each watermarked clip by software-based

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

screen recording on a Xioami 12S smartphone. We apply
the same keyframe detection scheme to the pirated clips. We
manually select two distinct thresholds, so that exactly 100
keyframes are detected in both the original and the pirated
clip. The sequence numbers of keyframes in the original clip
(or pirated clip) are denoted as Key® = {keyy, ..., keyfy,} (or
Key? = {keyl,... keylyn}), where key{ < ... < key$y, (or
keyl < ... < keyly)-

We use the position-agnostic recall rate, i.e., K 0Kev”] ¢

[Key®

quantify the severity of our first concern. Then, we calculate the
key?=key?|1<k<100
position-aware recall rate, i.e., | . K: e | , to quantify

the second concern. As shown in Fig. 2(a) Vthe posmon agnostic
recall rate can be as high as 80%, while the position-aware
recall rate ranges from 2% to 23%. Therefore, such methods
are vulnerable and unreliable.

B. DTW-Based Temporal Synchronization

Dynamic time warping (DTW) is a well-known algorithm
to synchronize two time series if one can be warped to align
with another “by stretching or shrinking it along its time
axis.” [14] It has been widely used in areas such as speech
recognition [35], gesture recognition [36], etc. The inputs
to DTW are two time series T'S' = ts},tsi, .. .,ts‘lTsll and
TS? = tsi,ts3,. .., ts7pge), With [T'S*| and |T'S?| being their
lengths. The goal is to construct a path w = wy, wo, ..., wk,
with max(|7'S*|,|TS?)) < K < |T'SY| + |T'S?|. The path w
indicates how 7'S' and T.S2 are aligned to each other, and its
element wy, = (wy.z, wy.y) implies that s’ is matched to

Wi . T

ts2 . in such an alignment. Two conditions must be met to

W -
congtzr/uct a valid w:
e Boundary Condition.w; = (1,1),wx = (|T'S|, |TS?|).

e Continuity Condition. For any 1 <k < K, (wg41.0 —
Wk, W1y — wi.y) € {(0,1), (1,0)7 (1,1)}.

The goal is to construct an optimal w* which minimizes

the distance, i.e., Dist(w*) = Zk 1 szference(tsw s

ts?, y) An example of using DTW to synchronize V|deos is
shown in Flg 3(a). A dynamic programming method can be used
to find w*, while its space and time complexities are as high
as O(|TS*||T'S?|). We seek to synchronize the pirated video
with the original one through a complexity-optimized variant of
DTW.

Sliding Window-Based Synchronization. The lightweight
fastDTW algorithm [14] has been proposed to approxi-
mate DTW, reducing the space and time complexities to
O(max(|T'St|,|TS?])). Despite the linear complexity, it is still
challenging to apply fastDTW in our scenario, where a video can
last for hours and be too large (~Terabytes) in the uncompressed
form to fit in memory. Surely, frame hashing can be adopted to
reduce the representation size of each frame. [37] Yet, frame
hashing inevitably loses some information. For adjacent frames
of high temporal redundancy, a lossy representation may not
be enough to achieve accurate synchronization of frame-level
granularity.

To reduce the memory overhead, we propose to perform
DTW on sliding windows. The basic idea is to synchronize a
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Fig.3. A comparison of DTW and basicSlidingDTW. (a) Using DTW to syn-
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for simplicity. The third frame of the original video is duplicated in the pirated
video, while the fifth frame is dropped. (b) An example of basicSlidingDTW. The
window length is set to 4 and a total of 3 steps are executed to iterate through the
entire sequences. The red double dashed line represents a sub-optimally matched
pair due to the boundary condition of DTW.

small window of frames from the pirated video with a window
of corresponding frames from the pirated video through the
standard DTW. The two windows can share the same length if the
two videos are of the same frame rate; otherwise, their lengths
can be set proportional to the frame rates. Here we assume the
former case to simplify the description. The first window is
denoted as (fg,- - -, fiindow tengen)» With f7 representing the
kth frame in the original video; the second window is denoted
as (fs- -+ Fioindow. tengin)- The two windows are repeatedly
slid toward future frames until the end of either video. The
final result is simply the concatenation of synchronization results
between each pair of windows. We refer to this basic algorithm
as basicSlidingDTW, where the memory requirement is only
related to the window length rather than the entire video length.

Handling Frame Duplication and Dropping. As shown in
Fig. 3(b), the basicSlidingDTW algorithm can cause sub-
optimal synchronization under the NR attack model, where
frames from the watermarked video can be dropped or duplicated
in the pirated video from time to time. In both cases, moving
the two windows by the window length would make the two
new windows not well matched to each other, and the drift can
accumulate over time.

To alleviate the effect of frame dropping and duplication, we
first detect sub-optimally matched frame pairs between the two
v]\c/mdows We determine a pair (f2, .., fiy, ,) to be sub-optimal
i

Dif ference ( o fgk_y)

< min min
§k#0,|5k|<v

P
Dif ference ( w10 wk.y+5k)) )

Difference(fwk z+6k> fwk y) (1)

min
Sk£0,|5k|<v
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holds. To make it clear why we check sub-optimal paring
by comparing with adjacent frames, consider a case where
the true corresponding frame for the frame 5, . is f . 5
(0k # 0). Since fy . resembles fp 4ok an nd fwk.y+5k may
resemble fP . due to temporal redundancy, it is likely that
.. resembles fP . making it difficult to determine the
occurrence of a sub-optimal pairing by simply comparing
Dif ference(fs, .. fh,.,) with an empirically and subjec-
tively pre-defined threshold. Therefore, we turn to look around
nearby frames to make a more objective and accurate judgment
of sub-optimal pairing, and then remove the sub-optimal pairs
(line 12-16in Algorithm 1, Section A.2 of the supplementary
material).

We mark a frame as “unmatched” if all the DTW pairs
containing it are sub-optimal. We slide the window so that in
the next step it starts from the first frame from the current
window whose following frames in the current window are all
“unmatched.” Otherwise, if the last frame in the current window
is “matched”, we move the window by its length (line 25-33in
Algorithm 1, Section A.2 of the supplementary material). In this
manner, in the case that frame duplication occurs (as shown in
Fig. 4(a)), there will exist some unmatched frames located at
the end of the original video’s sliding window, and they will
be correctly matched in the next step (as shown in Fig. 4(b)).
Likewise, in the case that frame dropping occurs (as shown in
Fig. 4(b)), the unmatched frames located at the end of the pirated
video’s sliding window will be correctly matched in the next
step (as shown in Fig. 4(c)). Therefore, we can always keep the
two windows well-matched even in case of frame duplication or
dropping.

C. Algorithm Evaluation

The detailed workflow of slidingDTW is presented in Al-
gorithm 1, Section A.2 of the supplementary material. It
performs standard DTW to match the two sliding windows
(line 11) and remove sub-optimal pairs via (1) (line 12-
16). Each standard DTW process introduces a computational
complexity of O(window_length? - frame_size), and each
sub-optimal matching detection process incurs a computa-
tional complexity of O(window_length - v - frame_size),
with v being a hyper-parameter in (1). The two sliding
windows are then slid (line 25-33) so that the algorithm
can proceed to match the following frames. As the slid-
ing step is at least one, the entire algorithm has a com-
putational complexity of O(min(m1,m2) - window_length -
(window_length + v) - frame_size), with m1 (or m2) be-
ing the number of all frames in the original video (or the
pirated video). The space complexity is O(window_length -
frame_size), as only the frames in the sliding windows need
to be kept in memory.

We conduct preliminary experiments to show the excellent
performance of slidingDTW, using the same 5 video clips as in
Section IV-A. A total of 100 frames are selected in each clip
and used as host frames. Denote the number of host frames in
an original clip, for each of which slidingDTW finds a matched
frame in the pirated clip, as n1, and the number of host frames
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Fig. 4.

An example of slidingDTW. The sub-optimal matched pairs are correctly detected by using (1) and removed (represented by the scissors icon in the

figure). The ‘mismatched’ frames are represented by red dots. The final result is the concatenation of results at all steps and the same as that of applying DTW on
the entire series in this example (see Fig. 3(a)). (a) The first step. (b) The second step. (c) The last step.

in an original clip, for each of which slidingDTW correctly
identifies the truly corresponding frame as the matched frame
in the pirated clip, as n2 (n2 < nl). Then we can calculate

the precision as 22 and the position-aware recall rate as {LTQO.

Furthermore, Wenclan denote the number of host frames not
dropped in the pirated video as n3 (n3 > n2) and define the
optimal position-aware recall rate as %. As shown in Fig. 2(b),
slidingDTW consistently achieves a precision above 98%, which
demonstrates the accuracy of our sub-optimal pairing detection
scheme shown in (1), as well as a high position-aware recall rate
(4-49 times higher than keyframe-based methods). However,
when the optimal position-aware recall rate decreases (as in
the case of the 3-rd video clip), the position-aware recall rate
of slidingDTW drops a little faster. As the optimal recall rate
is determined purely by the quality of the pirated video, we
conclude from the experimental results that the slidingDTW
algorithm is relatively sensitive to the quality of the pirated
video. Therefore, applications may need to use a larger number
of host frames (i.e., a larger n.) so that a sufficient number of host
frames can still be extracted from a low-quality pirated video.

V. BIPOLAR AND RANDOMIZED SVD WATERMARKING

A. Robustness of Watermarking

Watermarking technologies can embed invisible data into an
image to enable piracy tracing, tampering detection, etc. While
existing watermarking techniques are believed to be robust, their
reliability in our context remains in doubt for the following
reasons: 1) Typically, the robustness of a watermarking algo-
rithm is assessed against a single attack, whereas a watermarked
segment is subjected to composite attacks in both the NR and
CR attack models. To be more precise, the attackers are willing
to decode the received segment (whose embedded watermark
is already affected by compression), then perform malicious
operations to remove the embedded watermark, and finally
re-encode the modified segment for efficient redistribution. 2) As
stated in Section I1-D, the baseline method can utilize redundant
embedding to improve robustness [31], [38]. However, for a
rather short video segment, it’s highly likely that all the host
frames within it are similar due to temporal redundancy. As the
correctness of extracting the watermark depends on the content
of the host frame and the embedded watermark, extracting the
same watermark repeatedly from the similar host frames may
always produce the same result, making the redundancy-based
enhancement useless.

TABLE |
THE WATERMARK EXTRACTION ACCURACY OF TRADITIONAL SVD
WATERMARKING UNDER DIFFERENT ATTACKS

Attack
. . H.264+ ; H264+
Video 1264 gg MF (3 G}TE)) GNHo = 5)
+H24 77 + H.264
1 82.0% 67.8%  57.1% 87.0% 69.0%
2 67.9% 692%  58.4% 79.1% 62.6%
3 77.8% T745%  56.6% 90.5% 63.5%

2 MF: Median Filter ° GN: Gaussian Noise

We utilize the baseline SVD watermarking introduced in
Section 11-D to quantify the significance of the above two con-
cerns. As the baseline method was initially designed to embed
the singular value matrix of a watermark image rather than a
single bit, we employ two different images (whose singular value
matrixes are SO, and Sl ) to represent bit 0 and bit lin the
embedding stage. The extraction stage is slightly modified to
map the extracted S.,,,,, to bit 0 or 1 as follows: the extracted bit
is 0 if the cosine similarity between the extracted S.,,,, and S9,,,
is greater than that between S,,,,, and S., ; otherwise bit 1 is
extracted.

We conduct two preliminary experiments with the baseline
method by using it to modulate a single bit into every seg-
ment. The first experiment employs five distinct attacks on the
watermarked segments. As shown in Table I, the third and
fifth attacks are composite attacks, more closely resembling
real-world events. Given that composite attacks do really sig-
nificantly reduce robustness, they must be factored into our
architecture. In the second experiment, we change the number
of host frames used to repeatedly embed a single bit (which
reflects the level of redundancy) to validate the effectiveness of
redundant embedding. The imposed attack is H.264 encoding.
The baseline method is compared against an alternative strategy,
which first randomly determines the indices of host frames,
then randomly selects sub-regions (of size 512 x 512) located
at different positions of these host frames, and finally embeds
the same bit into these random regions rather than the entire
host frames. In this manner, the contents of these embedding
regions differ, and the interdependence among different votes
is decreased. For the purpose of fair comparison, the baseline
method also embeds the watermark into sub-regions (whose size
is also 512 x 512) of host frames, but all these sub-regions are
at the same spatial position. Fig. 5 illustrates the measurement
findings. As the number of embedding regions increases, the

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on March 07,2025 at 09:02:03 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5. A comparison of two embedding region selection strategies.

alternative method presents higher robustness, while the base-
line method degenerates for two reasons. First, as expected,
employing similar embedding zones within a brief video piece
does not always increase resilience. Second, when the number of
watermarked blocks increases, spatial and temporal redundancy
reduces, pushing H.264 to increase the compression level to
maintain a stable bit rate.

B. Watermarking for Streaming Services

Since the baseline method is ineffective in our scenario,
we propose two strategies to further improve its robustness
and computational cost, taking advantage of the fact that our
case provides a lenient restriction on watermark capacity (i.e.,
needing only one bit to be embedded in a segment). Additionally,
based on the results of the second experiment in Section V-A,
we propose a third improvement strategy. The following are the
three techniques:

Polarized Singular Value Modulation. The baseline method
modulates S.,,,, (which depends on the actual bit to be embed-
ded) to S by matrix addition (i.e., S.,,,, = S + aSwm). Instead,
we propose to modulate the single bit 5 via

S;um =9 + (_1)5aswmv (2)

where S,,,,, is a constant matrix. The rationale is that, because
watermarked frames are often subjected to a number of attacks in
our situation, we should aim to increase the distinction between
two different forms of the same frame (with bit 0 and bit 1 embed-
ded, respectively) and make them more easily distinguishable.
Following (2), the two forms are polarized in opposite directions
and immediately discernible.

Semi-Explicit SVD-based Watermarking Scheme. The em-
bedding overhead should be optimized to support real-time
watermarking of numerous live video streams. However, the
SVD operation onan C'1 x C'2 matrix has a time complexity of
O(C1(C2)?) [39]. Since we only care about /3 in the extraction
stage, we can directly set S,,,, equal to .S and re-write (2) as

Siym = (14 (=1)Pa) S. (3)

Consequently, F(r!,, )=US! VI =U(1+(+-1)a)SVT
= (1+ (=1)%a)F(r). Based on this, we propose to directly
compute F(r.,,,) through scaling F(r) by (1+(—1)"a)
without explicitly performing SVD to obtain S. This method
allows us to polarize the singular values without performing
SVD. Since the extraction stage does not require real-time
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execution as the embedding stage does, we still perform SVD
to obtain S, and S,4;, and determine the extracted bit as 0
if and only if |.S},,,| > |Saq;|- As evaluated in Section VII-C,
comparing the singular values (i.e., S},,,, and S,g;) is of higher
robustness than directly comparing F(r,,,,,) and F(rqq;). The
reason is that singular values of a matrix capture the intrinsic
characteristics of a matrix and are thus more robust than
the original matrix when facing attacks. Since this approach
performs SVD explicitly only during the extraction stage, we
refer to it as a semi-explicit SVD-based watermarking scheme.

Randomized Embedding Region Selection. We begin by ran-
domly selecting multiple host frames from each segment and
then randomly selecting an embedding region from each se-
lected host frame. The watermark is not embedded in the entire
host frames, but only in the selected regions. As discussed
in Section V-A, this may reduce the interdependence among
different votes, thereby increasing the accuracy of the majority
voting-based watermark extraction.

We are able to propose a watermarking algorithm based on
the above three techniques, consisting of an embedding part and
an extraction part. The slidingDTW algorithm is called before
executing the extraction part so that we know which frames to
extract the watermark. We detailedly describe its workflow in Al-
gorithm 2 and 3, Section A.2 of the supplementary material. The
time complexity of watermarking a video is O(m - n. - size?),
with m being the number of segments, n. being the number of
host frames in each segment, and size being the size of each
embedding region. Excluding the overhead of pinpointing the
host frames via slidingDTW, watermark extraction has a time
complexity of O(m - n, - size?).

VI. FINGERPRINT GENERATION AND ACCUSATION

As proved in [40], there are no deterministic (i.e., totally
secure with no errors) fingerprinting codes against the collusion
attack. Following the Tardos fingerprinting scheme [41], [42],
[43], we employ a randomized fingerprinting strategy to defend
against the CR attack. We begin by introducing the Tardos code
and then describe how we build a fingerprinting system for
streaming and live streaming services.

A. The Tardos Fingerprint Scheme

Generation. In the Tardos scheme, the fingerprint length is
denoted as m = Ac2in™, where A is a constant coefficient, co
is the maximum number of colluders defendable by the system,
n is the number of users, and 7 is the desired upper bound of
Prp (i.e., the probability that at least one innocent user is falsely
accused). All users’ fingerprints are denoted as a n x m matrix
X, where its jth row, X ;, is the fingerprint assigned to the jth
user.

Afingerprintwill be sampled independently and added to X as
its new row whenever a user requests the content. m parameters

gl), 1 <i < m) are sampled before sampling the first row
and then will be fixed. The probability density function used

to sample pgi) from [t, 1 —t]is

g(p) = Ni/+/p(1 - p), 4
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where the coefficient V; ensures ftl’t g(p)dp = 1,and the cutoff
parameter ¢ can be tuned to adapt to different performance
requirements. Typically ¢ is set to a small positive number.
The reason for using such g(p) and a small ¢ will be discussed

later in Section VI-B. Then, each element XJ(Z) is sampled inde-
pendently, with P[X](.Z) =1] = p{” and P[XJ(’) =0]=p{’ =
1- pgl).

Accusation. Denote the setof colludersas C',wherec = |C| <
o, and the sub-matrix of X that corresponds to C' as X¢. The
fingerprint embedded in the pirated copy y can be viewed as
y=(yM,...,y")) = p(X¢), where p is a (deterministic or
probabilistic) function determined by the collusion strategy, and
y® € {0,1}.

Colluders are accused based on the calculated accusation
score. Forany user j that once requested the video, the accusation

score is computed as s; =" | Sg‘i) =2 (0, X091 (PS&))

(i) 1, ifx=y,
+ (1 - 5y(i),X§i))go(py(i)))’ where 527,3/ = {07 if 2 £y,

91(p) = /52, and go(p) = —, /% The intuitions behind
such s; are as follows: 1) The jth user should be more suspicious
if y() = XJ(Z). Following this formula, the score s; will thus be

increased by |g; (p;i(l>)|. Otherwise, in case that y® £ x0, 55
will be decreased by \go(piﬁ)i)ﬂ. 2) In the case of y(V) = XJ@,
the smaller the value of p;i()“ is, the fewer the number of users

having their ith fingerprint bit equal to y(*) are, and the more
suspicious the jth user should be (because the jth user is one
of the few users owning that 3(V). As g, (p) is a monotonic
decreasing function, increasing the accusation score by g;(p)

correctly reflects the relationship between p(yi()i) and the degree

of suspicion. 3) For any position 7 and any innocent user 7, 357)
has an expectation of 0 and a variance of 1.

The accusation threshold is z = Bcoln%, where B is a con-
stant coefficient. If and only if s; > z, the jth user will be
accused. Using this accusation strategy, it can be theoretically
guaranteed [41], [42] that Prp < 1 holds with carefully selected
t, A (the coefficient of the code length m), and B (the coefficient
of the accusation threshold z).

B. Discussion of the CR Attack

Formal description. The collusion strategy used in the CR

attack model can be formalized as follows:

e Assumption 1: Marking Condition. If and only if 35 €
{0,1}s.t.Vj € C, XJ(.’) = B, the ith position will be con-
sidered undetectable by colluders, and y; = 5 will always
hold.

e Assumption 2: Independent Strategy. For any i # j, the
sampling of y; is independent from that of y;.

e Assumption 3: Equiprobable Strategy. If we define b’ =

; (@)
11X = B, € CY, P(y:=B) = = will hold for
each position 1 < ¢ < m and each bit 5 € {0, 1}. In other

words, for each position 4, the colluders randomly select
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one member, with the selection rate of each member being
%. Then the segment received by the selected member will
be used as the ith part of the pirated copy.

Improving the Tardos code under the CR model. The marking
condition has been widely used in previous works [41], [42],
[44]. To utilize the marking condition, the cutoff parameter
t used in the distribution function (see (4)) is typically set
close to 0 [41], [42]. As the distribution is biased towards two
ends of [t,1 — ¢], such ¢ leads most pgl) close to either 0 or 1.
Consequently, the colluders will receive the same variant at most
positions. According to the marking condition, their specific
collusion strategy has no influence on these positions and thus
limited influence on their chance of being caught.

Although a ¢ close to O takes advantage of the marking
condition, it reveals limited information about the piracy source,
since users always receive the same variant. As a result, the
fingerprint is too long to be practical. Therefore, we re-select
the value of ¢ by deducing the expectation of the sum of all
colluders’ accusation scores under the CR attack model. We set ¢
to 0.5 with the support of theoretical analysis (see Section VI-C),
and greatly reduce the code length needed to defend the same
number of colluders.

C. Parameter Selection

Objectives. When analyzing the Tardos scheme’s security
level, two often used metrics are Prp (see Section VI-A) and
Prn (which represents the probability that no guilty user will
be correctly accused of piracy). The precise values of three
adjustable parameters, namely A, B, and ¢, can affect both Prp
and Pry. We derive optimal parameter values theoretically for
the CR attack model in order to satisfy the following objectives:

e Objective 1: when 1 < ¢ < ¢g, Prp < 1.

e Objective 2: when 1 < ¢ < ¢g, Pry < e.

e Objective 3: A4, the coefficient of the fingerprint length m,
should be kept small so that we can embed the whole
fingerprint by embedding one bit into each segment.

e Obijective 4: The value of ¢ should be independent of ¢
(which could possibly be related to »n), n and m (which
is related to the unpredictable duration of the video in
the case of live streaming services), so that the fingerprint
generation process can directly boot up without an arbitrary
estimation of these values.

Sufficient Conditions Theorems. The sufficient conditions for
Objective 1 and Objective 2 are summarized in the following
two theorems. Theorem 1 is proved by Skori¢ et al. [42], while
the proof of Theorem 2 is conducted in Section A.4 of the
supplementary material.

Theorem 1 (The sufficient condition for. Objective 1) If the
parameter values satisfy and

B?/(44) > 1, ()

Objective 1 will be achieved.
Theorem 2 (The sufficient condition for. Objective 2 ) If
the colluders’ strategy conforms to Assumption 1 - 3, and
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TABLE Il
THE ATTRIBUTES AND QOS METRICS OF EACH TEST VIDEO

Video ID 1 2 3 4 5 6 7 8 9
Category Chat  Dance Western =~ Musical Guitar Playing Variety Show Science Documentary Game Show
Resolution 1280 x 720 ‘ 1920 x 816 ‘ 1920 x 1080
Video Length 01:30:46 01:09:38 01:39:31 01:15:45 01:25:28 01:06:39 01:15:28 01:01:34 01:34:55
Entire Duration  08:11 6:18 14:28 15:25 16:16 12:30 13:34 11:51 17:55
Video Rate (fps) 277 276 170 123 131 133 139 130 133
Single EM (ms) 6.7 6.7 6.9 7.0 6.9 6.9 6.8 7.0 6.9
Region EX (ms) 13.9 13.2 16.0 17.8 17.2 17.0 15.4 17.2 18.4
Size Inc (%o) 27 1.5 77 1.8 3.8 7.1 5.4 1.3 3.7

Annotations: 1. Abbreviations used in the 2nd column: EM - Embedding; EX -

Q= w satisfies
Afi— B >0, (6)
and @ > ‘”%i Objective 2 will be achieved.
coln

To meet Objective 1 and 2, we instead try to meet the above
sufficient conditions. If we only consider the inequality (5) and
(6), we will get: % <AL %2. Then the optimal value of A
would be A* = %. According to Lemma 1 (in Section A.3 of
the supplementary material), /z obtains its maximum value 1 if
andonly ift = % so the minimum value of A* is 4. With further
consideration of other inequalities in the above two theorems and
the remaining objectives (i.e., Objective 3 - 4), StreamingTag
sets ¢ to 1, A to 4(1+ /@), and B to 4 + 2/, as long as

1 ) . . .
o= fﬂl[;; < 1. With this setting, we can verify that all the
- n

inequalities in Theorems 1 and 2 hold.

Parameter Selection Strategy in StreamingTag. StreamingTag
sets ¢ to 0.5. Once the preprocessing stage ends, the number of
segments is determined, so the fingerprint length m is fixed.
Every time a new pirated copy is captured by the stream-
ing platform, the number of users, n, may be different, and
StreamingTag will update the parameters (n, ¢, co, A, B, and
z; excluding ¢ and m) so that A = 4(1 + \/¢), B = 4 + 2\/¢,
and ¢ < 1still hold for the new value of n. A detailed description
is in Section A.5 of the online material.

VIl. EVALUATION

We examine StreamingTag with comprehensive experiments.
The preprocessing pipeline is prototyped on top of FFmpeg [34],
with the proposed watermarking technique implemented as an
FFmpeg filter. The evaluation consists of three aspects: (a) the
impact on QoS via metrics including latency, bandwidth, and
fidelity; (b) the robustness against the NR attack; and (c) the
resistance against the CR attack.

A. Experimental Setup

We evaluate StreamingTag using nine videos, whose key
attributes are presented in the upper part of Table Il. All videos
are at 25 frames per second (fps). The processing latency is
measured on a desktop computer with an AMD Ryzen 9 5950X
processor and 128GiB memory. The resistance against screen
recording-based NR attack is evaluated using a Xiaomi 12S
smartphone.

Extraction 2. Format of time intervals: (HH:)MM:SS

We set the watermark strength « to 0.2. The size of each
embedding block is set to 512. We employ the H.264 encoder to
encode the watermarked video. The H.264 encoder’s keyi nt
and mi n- keyi nt parameters are both set to 25, resulting in a
1-second length for each video segment. We set other H.264 pa-
rametersas follows: (1) bf r anes setto0; (2)r c- | ookahead
set to 0; (3) preset set to superfast; (4) tune set to
zer ol at ency; and (5) profile:v set to high.

B. Evaluation of QoS

We set n. to 1 and use the following three metrics to evaluate
the QoS:

e Processing latency measures the running performance of
the watermarking algorithm, which is the indicator to de-
termine if the algorithm can run in real-time.

¢ Video Size affects QoS as it affects bandwidth consumption.

¢ Video fidelity measures how invisible the watermark is,
indicated by two factors, i.e., peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [45]. PSNR
is determined by the mean square difference, while SSIM
better replicates the behavior of the human visual system.

Processing Latency. We measure the processing latency to
assess the cost introduced by StreamingTag. Specifically, we
first measure the duration of generating all watermarked variants
from the test video (including decoding, watermark embedding,
and re-encoding). Then, we determine how much CPU time [46]
our watermarking algorithm requires to embed a single bit into
(or extract a single bit from) a single embedding region.

The middle part of Table Il summarizes the findings, from
which we can deduce that: (a) The rate of processing the entire
video is significantly higher than 25 fps, verifying that Stream-
ingTag is suitable for real-time streaming services; (b) Water-
marking is quite lightweight as it takes only several milliseconds
to process a single region.

Video Size. A poorly designed watermarking scheme may
reduce redundancy and thus increase the size of the compressed
video. To show StreamingTag doesn’t suffer from this issue, we
compare the average size of watermarked and unwatermarked
segments. To generate unwatermarked segments, we transcode
the video into consecutive segments, keeping all H.264 encoder
parameters the same as generating watermarked segments for
a fair comparison. As shown in the last row of Table I, the
video size increases are less than 1%, confirming StreamingTag
doesn’t consume additional bandwidth.
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Video Fidelity. A poorly designed watermarking scheme can
produce visible artifacts and degrade the QoS. We measure the
fidelity of the watermarked video to validate if such a problem
occurs in StreamingTag. We generate watermarked and unwa-
termarked segments in the same way as we measure the video
size. PSNR and SSIM are computed between the embedding
regions in the watermarked segments and the corresponding
regions within the unwatermarked segments. As shown in Fig. 6,
StreamingTag does not sacrifice video fidelity, since a PSNR
higher than 30 dB (or an SSIM higher than 0.98) is considered
good.

C. Security Under the NR Attack

Transcoding-Based NR Attack. We consider the first case
of the NR attack, where the watermarked copies are directly
downloaded and then re-distributed. Further modification can
be applied before re-encoding and re-distribution. We do not
use slidingDTW for this experiment as no frame dropping or
duplication occurs. We compare our watermarking scheme with
three alternatives, using the same embedding regions and the
same value of n. (=1) for fairness. The first alternative is referred
to as bipolar DWT watermarking. Its embedding part is the
same as that of our strategy, but it extracts the watermark by
calculating 2labstDWT(ryn)-HLs)) \yhere sum computes the

wm.

sum(abs(DWT (rqq;).HL3))"'
sum of all elements in a matrix, abs computes the element-wise
absolute values of a matrix, DWT'(r).H L3 performs 3-level
DWT and returns the H L3 frequency sub-band of . The purpose
of this comparison is to demonstrate the necessity of explicit
SVD for robust watermark extraction. The second alternative is
the baseline described in Section 11-D. We use two watermark
images to represent bit 0 and bit 1 respectively, as discussed in
Section V-A. The third alternative embeds the watermark in the
DCT domain [38].

We evaluate their performances on all 9 test videos. In addition
to the basic case where the attackers perform no modification
on the H.264-encoded video, we mimic the attacker’s behavior
by decoding the watermarked and encoded video, modifying
(through Gaussian noising of o = 10, scaling with a factor of
0.75or 1.25, or 15 x 15 median filtering), and then re-encoding
(with H.264 again) for re-distribution. The modification is
conducted by transcoding the watermarked video with built-in
FFmpeg filters, i.e., scale, noise, and median filters. To extract
the watermark from scaled videos, we first decode them and then
re-scale them to the original resolution.

The results are shown in Fig. 7, from which we can conclude
that: (a) Both our scheme and bipolar DWT watermarking
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Fig. 7. The extraction accuracy of different watermarking schemes under
different attacks.

TABLE Il
SYSTEM PERFORMANCE UNDER THE SCREEN RECORDING-BASED NR ATTACK

Video ID 1@ 22 3b 4 5 6 70 8 o

Useful Segments (%) 82.3 90.4 83.3 90.9 76.7 85.0 83.7 85.3 78.9
Accuracy (%) 79.8 84.7 83.0 66.9 76.2 82.6 84.5 729 83.2

achieve higher robustness than the other two alternatives, vali-
dating the effectiveness of polarized watermarking. (b) Although
bipolar DWT watermarking achieves almost the same level of
accuracy as our scheme under most attacks, it drops behind under
very strong attacks (i.e., H.264 plus 15 x 15 Median Filter plus
H.264), proving that semi-explicit SVD contributes to accurate
extraction. (¢) Our scheme has an accuracy greater than 90%
under most scenarios, realizing an improvement of 2.25x at
most and 1.5x on average when compared with traditional SVD
watermarking. It can be further improved with a larger n..

Screen Recording-Based NR Attack. In this experiment, we
use the same test videos and parameters as in Section VII-A,
except that n. is set to 3 to alleviate the effect of frame dropping.
We play the watermarked videos and run the built-in screen
recorder to generate pirated copies. The pirated copies are first
synchronized with the original videos via slidingDTW. Then,
the watermark is extracted from the re-identified host frames.
We regard segments containing at least one re-identified host
frame as useful segments. As shown in Table Ill, the ratio of
useful segments is higher than 80% for most videos, and the
extraction accuracy is around 80% for most videos. The results
showcase the strong robustness of our slidingDTW algorithm
and semi-explicit SVD watermarking algorithm.

D. Security Under the CR Attack

Security under the CR attack. To demonstrate the superior-
ity of our parameter selection strategy against the CR attack
model, we compare it with the strategy in the original Tardos
scheme [41] and that in the symmetric Tardos scheme [42].
We consider a video of 7,200 useful segments and assume an
extraction accuracy of 90%. We set n to 100,000 and rang ¢
from 1 to 10. The colluders’ attack strategy conforms to the CR
model. For each ¢ and each strategy, the experiment is conducted
100 times.
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Fig. 8. Collusion resistance.

For our method, we use the parameter selection strategy
described in Section VI-C. For the two alternatives, we set m to
7,200 and ¢y to the maximum number of colluders which can be
defended with a false positive rate of < 0.1. The value of ¢ is
then determined based on ¢y, as required by [41], [42] (e.g., t iS
set to 550 in [41]).

The results are shown in Fig. 8. Since Pr p equals to 0in every
experiment, we do not present it in this figure. We observe that
our method defends more colluders under the CR attack. On
average, our strategy improves the recall rate (i.e., the ratio of
the number of accused colluders to the number of participating
colluders) by 26% when compared with [42], and by 58% when
compared with [41].

VIII. DiIsCUSSION

Working with adaptive bitrate streaming. To adapt Stream-
ingTag to adaptive bitrate streaming, every bit only needs to be
embedded once for multiple transcoding bitrates/resolutions for
the following two reasons: 1) the watermark embedding process
is performed before the encoding process in StreamingTag; 2)
the proposed watermarking algorithm is robust to scaling (see
Section VII-C).

Reducing the storage cost. StreamingTag doubles the video
storage costs of the origin server and the CDN as two versions
are generated for each segment. Such a heavy overhead can
be optimized as the two differently watermarked variants only
differ in a few host frames. One possible optimization strat-
egy is to resort to the temporal scalability technique [47] in
scalable video coding, where frames are temporally partitioned
into distinct layers. Specifically, the base layer, which serves
as the foundation, is coded independently of the enhancement
layer. We suggest using only frames in the enhancement layer
as the host frames and treating all frames in the base layer
as the non-host frames. This significantly reduces the storage
overhead by limiting duplication to the enhancement layer and
maintaining only a single version of the base layer. Yet, the CDN
and the client player must be customized so that: 1) at least one
version of the enhancement layer is downloaded and decoded; 2)
the users cannot figure out which frames are in the enhancement
layer; otherwise, they can simply discard the enhancement layer
containing all the host frames.

Fine-grained collusion. In the CR attack model, we assume
that the colluders intermix their copies in a segment-level gran-
ularity. However, the colluders may choose to intermix their
copies frame by frame so that both two bits (0 and 1) can be
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detected in a single segment. StreamingTag can be extended to
handle this fine-grained collusion attack. Specifically, Stream-
ingTag can embed a g-ary bit into each segment, i.e., generating
q different watermarked variants for each segment. By choosing
a ¢ larger than n,. (the number of host frames), the fine-grained
frame-level collusion attack will expose more colluders while
not introducing all the ¢ bits into the pirated segment. As
demonstrated in [48], this will lead to a higher risk for colluders,
while innocent users are still unlikely to be falsely accused.

Deep learning-based attack. Some researchers propose to
remove the watermark through neural networks [49], [50]. A
possible countermeasure is to use deep adversarial learning,
while its overhead must be reduced for large-scale streaming.

Camcorder recording. We regard camcorder recording as
thornier than software-based recording, since the camcorder
may be frequently shaken due to unsteady hands. Consequently,
the pirated video may experience translation and rotation. We
expect to enforce automatic alignment in the future by using
methods such as KAZE feature [38].

Collusion strategy. Colluders may employ a collusion strategy
different from that in the CR model. One countermeasure is
to orthogonally use the proposed fingerprinting code and other
codes that resists other collusion strategies. In other words,
multiple independent fingerprints are generated for each user
and simultaneously embedded into the copy. Another measure
is to use g-ary (¢ > 2) bits to construct fingerprints. The finger-
printing scheme can be designed to be more universal with a
larger code space.

Distribution topologies. As different streaming platforms may
employ different watermarking and fingerprinting technologies,
attackers could evade the accusation by fetching different parts
of a video from different platforms. Mutual trust among stream-
ing platforms must be established to promote cooperation and
respond to this piracy strategy. To address mistrust between
service providers and users in piracy tracing for peer-to-peer
video distribution, researchers typically resort to a trusted third-
party [51], [52] or adopt the blockchain technology [53]. Similar
strategies should also be used to maintain trust among platforms.

IX. RELATED WORK

DRM. DRM protects digital content by encrypting it before
distribution and requiring users to purchase digital licenses
containing the decryption key [3]. However, as discussed in
Section |, DRM has several inherent drawbacks.

Anti-Camcording Technologies. Anti-camcording technolo-
gies are mainly based on the difference between the HVS and the
common digital cameras. For example, LiShield [12] deployed
LEDs flickering at high frequency and in specialized waveforms,
which are imperceptible to the HVS but not to the common
digital cameras. Considering that the screen refresh rate can be
higher than the video frame rate, KALEIDO [11] re-encoded
each video frame into multiple specially designed frames that
only looked normal to the HVS. Nevertheless, they require
client-side modifications and cannot prevent software-based
recorders.
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Collusion-Resistant Forensic Fingerprinting. Many earlier
works are aimed at deterministic fingerprinting strategies, where
an error rate of 0 must be guaranteed. Hollmann et al. [54]
proposed such a deterministic fingerprinting approach that re-
quires c¢o < 2. Staddon et al. [55] proposed a deterministic
fingerprinting strategy, which works under any possible value
of ¢o. However, it unrealistically requires the alphabet size ¢
(i.e., the number of variants for each video segment) is greater
than or equal to n — 1. Due to these inherent limitations [56],
recent work has concentrated on non-deterministic fingerprint-
ing, which allows for non-zero Prp and Pry . There exist two
major categories of non-deterministic fingerprinting schemes,
i.e., the Boneh-Shaw scheme [40] and the Tardos scheme [41],
[42], [43]. Because the Tardos scheme’s code length is nearly
equal to the square root of the Boneh-Shaw scheme [41], we
base our fingerprinting approach on the Tardos scheme.

X. CONCLUSION

In this work, we propose StreamingTag, a scalable piracy
tracing framework for streaming services. To ensure interop-
erability with CDNs, StreamingTag embeds fingerprints at the
segment level. A novel slidingDTW algorithm is used to pin-
point watermarked frames in the pirated video, and a polarized,
semi-explicit, and randomized SVD watermarking algorithm is
incorporated for robust watermarking. Additionally, a collusion-
resistant code is used to give collusion resistance. The evaluation
findings indicate that StreamingTag provides an acceptable level
of service and considerably outperforms previous techniques.
StreamingTag, we believe, is a significant step towards scalable,
reliable, and traceable video streaming.
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