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Abstract Navigation is a fundamental component of modern information application systems, ranging from military, trans-

portations, and logistic, to explorations. Traditional navigations are based on an absolute coordination system that provides

a precise map of the physical world, the locations of the moving objects, and the optimized navigation routes. In recent

years, many new emerging applications have presented new demands for navigation, e.g., underwater/underground naviga-

tions where no GPS or other localizations are available, an un-explored area with no maps, and task-oriented navigations

without specific routes. The advances in IoT and AI enable us to design new navigation paradigms, embodied navigation

that allows the moving object to interact with the physical world to obtain the local map, localize the objects, and optimize

the navigation routes accordingly. We make a systematic and comprehensive review of research in embodied navigation,

encompassing key aspects on perceptions, navigation and efficiency optimization. Beyond advancements in these areas, we

also examine the emerging tasks enabled by embodied navigation which require flexible mobility in diverse and evolving

environments. Moreover, we identify the challenges associated with deploying embodied navigation systems in the real world

and extend them to substantial areas. We aim for this article to provide valuable insights into this rapidly developing

field, fostering future research to close existing gaps and advance the development of general-purpose autonomous systems

grounded in embodied navigation.
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1 Introduction

Navigation has been a fundamental ability of autonomous systems, such as robots [1,2], AGVs (automated
guided vehicles) [3–5], UAVs (unmanned aerial vehicles) [6–8], to fulfill a wide variety of tasks in complex
environments [9–14], including housekeeping, package delivery, and disaster rescue. A navigation system
locates itself, plans paths, and navigates toward target locations based on knowledge of the environment
while avoiding potential obstacles. Such a complex process requires a deep integration of perception,
decision-making, and motion control, all of which are essential to the successful deployment of such
systems in real-world scenarios.

As the need for more intelligent, capable and versatile machines that can operate autonomously
in diverse and complex environments has intensified, the scope and sophistication of navigation tasks
have evolved accordingly. Navigation has developed from waypoint-based navigation in structured envi-
ronments like factories and warehouses for basic automation to simultaneous localization and mapping
(SLAM) with vision-based perception [15–17] for navigating in changing environments without predefined
paths. With advancements in artificial intelligence (AI), human expectations for autonomous systems
evolved from basic navigation to the execution of complex, goal-directed tasks. Modern navigation sys-
tems are now expected to perform high-level functions that go beyond mere movement. For example,
autonomous vehicles must navigate not just for transportation but also adhere to traffic laws and en-
sure passenger safety; service robots are expected to autonomously navigate within homes and offices
to assist with tasks like cleaning, organizing, or fetching objects. However, advancements in AI have
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been primarily driven by large-scale learning from human-curated, static internet data, which has led
to significant improvements in tasks like image recognition, speech synthesis, and text understanding,
sophisticated navigation tasks remain a formidable challenge for AI agents. Embodied navigation, with
its emphasis on interaction with the physical world, represents a critical frontier in this pursuit. Un-
like static data-driven navigation systems, embodied navigation systems must continuously perceive and
respond to dynamic, often unpredictable environments under different task objectives, sometimes even
human instructions [18].

We aim to provide a systematic and thorough review of research in embodied navigation. The liter-
ature on embodied navigation is categorized into four main aspects: perception, navigation, efficiency
optimization, and embodied navigation enabled tasks.

• Perception. Perception lays the foundation for subsequent planning and control stages of navigation
systems. In Section 2, we review perception models of embodied navigation systems to perceive and
interpret their surroundings with diverse sensors and sensing modalities. It can be subdivided into
geometric perception, which focuses on understanding the spatial layout and structure of environments,
and semantic understanding, which involves recognizing objects and scenes within those environments
while reasoning about their interrelationship and relationship to the navigation objective.

• Navigation. It includes the action planning and motion control (we focus more on the former in
this article) process of the agents to navigate through complex environments, which is the core of navi-
gation systems. Section 3 delves into various navigation methodologies that reflect the diverse strategies
researchers employ to guide agents through physical environments to achieve specific goals, which mainly
fall into two categories of approaches, geometry-based approaches that utilize traditional mapping and lo-
calization techniques, and learning-enhanced approaches that leverage advancements in machine learning
to enhance navigational capabilities.

• Efficiency optimization. To meet the performance requirements of complex navigation tasks given
the resource constraints that many navigation systems operate under, designated efficiency optimization
for embodied navigation is essential. Section 4 addresses various strategies for latency optimization, en-
ergy efficiency optimization, and robustness improvement, which are essential for the practical deployment
of these systems in real-world applications.

• Embodied navigation enabled tasks. With the advanced capability of embodied navigation,
emerging tasks that require flexible mobility in diverse changing environments can be boosted. In Sec-
tion 5, we review specific tasks enabled by embodied navigation, including autonomous driving, general
assistant robots, navigation for bionic applications, and navigation in micro-environments. Each of these
applications presents unique challenges and opportunities, highlighting the diverse potential of embodied
navigation systems.

While embodied navigation holds great promise and has made significant strides in recent years, there
remain substantial areas that require further improvement and in-depth study. At the end of this article,
we also discuss these critical issues, highlighting the limitations and open questions that continue to
hinder the full realization of embodied navigation’s potential. Despite the advancements, challenges
such as real-world applicability, multi-agent collaboration, bio-inspired neural architectures, and concerns
around security and privacy still pose significant obstacles. These challenges must be addressed to propel
the field forward and achieve the robust, versatile systems envisioned by researchers and practitioners
alike.

2 Perception

In this section, we first present some theoretical foundations for embodied navigation in Subsection 2.1.
On the basis of those foundations, the perception of the surrounding environment and the agent enables
the following planning and control stages. In Subsection 2.2, we review the geometric perception task,
whose main target is to reconstruct the geometric structure of the environment and/or localize the
agent or the target via processing the data of one or multiple sensors. As a high-level understanding
of the environment enables more complex navigation tasks such as object goal navigation and visual
navigation, many recent efforts have been aimed at constructing a semantic or implicit representation of
the environment. Furthermore, these hyper-semantic representations are superior in terms of robustness
and storage efficiency. We regard obtaining these hyper-semantic representations and localizing the agent
with such representations as hyper-semantic perceptions in Subsection 2.3.
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Figure 1 (Color online) Foundations and associated technologies for traditional navigation.

Figure 2 (Color online) Working process of an agent regarding sensation and physical space.

2.1 Theoretical foundations

Firstly, we provide a brief review of the theoretical foundations for traditional navigation. Subsequently,
we introduce the sensation space which is spanned by the sensing data of embodied agents. We will show
that the sensation space is a complete normed vector space, specifically a Banach space. It is consistent
with the physical world, and R3 in terms of navigation. Additionally, some properties of the sensation
spaces will be provided.

2.1.1 Foundations for traditional navigation

Traditional navigation is based on three theoretical foundations and the associated technologies. As de-
picted in Figure 1, cartography contributes to the creation of maps, employing cylindrical projections,
Mercator projection, photogrammetry, remote sensing, the world’s measurement system, and other geo-
graphic information systems (GIS). Localization techniques utilize triangulation to determine the position
of an embodied agent on the map. Examples of localizations include the navigation satellite system (GPS,
Beidou, GNSS, etc.), differential global positioning system (DGPS), landmarks with anchor nodes, trian-
gulations based on time of arrival (ToA), time difference of arrivals (TDoA), and angle of arrival (AoA).
With the map and the real-time location of the agent on the map, graph theory is applied to guide the
agent’s movement routes. Various optimization goals are employed to generate different routes, such as
the shortest path, maximum flow, minimum cost on routes, and the fastest routes.

2.1.2 Sensation space (vector space)

During movement, a moving agent acquires environmental information via sensing capabilities like satellite
signals or wireless signal strength. It obtains a map, often constructed in prior, localizes itself on the
map, and employs route optimization algorithms to guide its real-time movement. This working process
is illustrated in Figure 2. Based on years of practical experience, this approach is sufficient and effective,
while an open question remains. Is this the only necessary way to navigate?

We can observe that sensing data essentially guides the movement of the agent, rather than the map
or routing algorithm determined prior to navigation. Sensing data alone, without being mapped to the
physical world, may be sufficient to guide the movement. To answer this question well, we have the
following observations.
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Definition 1 (Sensation space). Suppose the moving agent is equipped with certain sensing capabilities,
providing sensing data continuously. The sensing data are multi-modality coming from various sources
such as the wireless signals (signal strength, amplitudes of the signals, phase of the signals, TDoA),
accelerometers, gyroscope, and camera (images and the parameters). Without loss of the generality, we
denote these sensing data as a data vector s = (s1, s2, . . . , sn), and have the following theorem.

Theorem 1 (The sensing data s form a vector space S). To show that the sensing data s form a vector
space S, we have the following statements.

• Commutative law. For all sensing vectors x,y ∈ S, x+ y = y + x.
• Associative law. For all vectors x,y, z ∈ S, x+ (y + z) = (x+ y) + z.
• Additive identity. For any vector x ∈ S, the vector space contains the additive identity element 0

such that 0+ x = x+ 0 = x.
• Additive inverse. For each vector x ∈ S, there is an −x ∈ S,−x+ x = 0.
• Distributivity. c(x+ y) = cx+ cy and (x+ y)c = cx+ cy.
• Scalar associativity. c(dx) = cdx.
• Identity. 1x = x.
Notice that in order to keep the physical meaning of the sensing data in the physical world, the

additional operations in vector space V may not be the one in the physical world R. For instance,
sensing data from images shall be converted to the frequency space to operate. A red plus a blue may
generate a purple, which violates the closeness of additional operations. Thus the red and blue shall all
be converted to the corresponding frequency and the strength, added in the frequency space, and then
converted back to the purple in the color space.

Norm in sensation space. In order to navigate in the sensation space, we need to define the norm
in the sensation space S. This norm shall be consistent with the physical space so that the navigation
in two spaces is consistent as well. In practice, since sensing vectors are obtained in the physical world,
every sensing vector x ∈ S is associated with one physical location r ∈ R only. Let f : S → R be the
map function from the sensation space S to the physical world space R. We define the norm function D

in S as follows:

∀x ∈ S, D(x) = |f(x)|2, (1)

where | · |2 is an l2 norm. By theorem in vector spaces, ∀x,y ∈ S, d(x,y) = |D(x) − D(y)| defines a
metric on S. And this metric is consistent with Euclidean distance in R.

2.1.3 Isometry of sensation subspaces

The sensation space is a Banach space, i.e., a complete vector space. As its cardinality is much larger
than the physical space R3, we have the following corollary by the theorems of vector spaces.

• There exists a sensation subspace, which is isometric with R3. The key to finding such subspace is
to define a distance-preserving map function f such that for any x,y ∈ S, dS(x,y) = dR3(f(x), f(y)).

• The distance-preserving map function f is injective, otherwise two distinct points, say a and b, could
be mapped to the same point, which contradicts the coincidence axiom of the metric, i.e., d(a, b) = 0
iff a = b. Moreover, an order embedding between partially ordered sets is injective as well. Clearly, the
isometry between the sensation subspace and the physical world is a topological embedding.

• In practice, every point in the physical space, if it can be used during navigation, will have the
corresponding sensation data. Thereby the isometry function f is bijective, i.e., global isometry, and has
the function inverse.

• Every time series {r(t)} ∈ R has the corresponding {s(t) = f(r(t))} ∈ S such that d(r(t1), r(t2)) =
d(f(r(t1)), f(r(t2))).

2.2 Geometric perception

Geometric perception aims to reconstruct the geometric 3D/2D structure of the environment and obtain
the geometric position of the agent or the navigation target. As shown in Figure 3, geometric perception
can be achieved using different sensors, and there exist four geometric perception mechanisms with distinct
outputs. The first mechanism is SLAM (see Subsection 2.2.1), where the agent tries to simultaneously
construct a map of the environment and localize itself in the map in real-time. SLAM enables an
embodied agent to navigate through an unknown environment autonomously. The second is the structure
from motion (SfM) (see Subsection 2.2.2), where the goal is to reconstruct the geometric structure of a
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Figure 3 Geometric perception.

large-scale environment based on an unordered set of frames captured by one or many agents. Compared
with SLAM, SfM can achieve a higher reconstruction accuracy and supports the reconstruction of a larger
environment with its looser requirement on the reconstruction duration. The third is self-localization (see
Subsection 2.2.3), where the agent aims to localize itself in a known environment whose geometric map
is constructed by the SLAM program on other agents or SfM in advance. The last is target localization
(see Subsection 2.2.4), where the agent aims to localize the navigation target.

2.2.1 SLAM

SLAM refers to the process of simultaneously constructing a geometric map of the environment (i.e., map-
ping) and localizing the agent in the autonomously generated map (i.e., localization). It allows camera-
equipped agents to automatically understand an unknown environment without relying on any manually
made map or pre-deployed infrastructure and in real-time. Odometry, loop closure detection, and backend
are the three most important sub-processes in SLAM. Odometry focuses on local mapping and localiza-
tion by analyzing a sequence of inputs; loop closure detects whether the agent reaches a previously visited
place; and the backend module further optimizes the results of the front-end modules (i.e., odometry and
loop closure detection) towards the goal of maximizing the posterior probability.

Process I. Odometry. We classify different odometry methods based on their underlying sensor
modalities.

• Visual odometry. In this part, we first introduce the two classical visual odometry methods,
i.e., the feature method and the direct method. As the classical methods have several challenges, many
deep learning-based methods have been proposed to address the challenges. We also systematically review
these deep learning-based techniques.

The feature method workflow is illustrated in Figure 4. First, features like SIFT [19], SURF [20], and
ORB [21] are extracted from each frame. Features are typically corners detectable in multiple images,
consisting of a keypoint (position) and a descriptor (surrounding image information). In monocular
visual SLAM, keypoints are 2D coordinates, while in stereo or RGB-D SLAM, they can be 3D points
with depth or 2D points if depth sensing fails [22]. Keypoints are then matched across frames or with 3D
landmarks on the map using feature descriptors. Camera poses are estimated by minimizing reprojection
errors of matched keypoints, assuming they correspond to static objects. Common methods include
epipolar geometry (2D-2D matches), iterative closest point (ICP) (3D-3D matches), and PnP (3D-2D
matches). Finally, 2D keypoints’ depths are determined through methods like triangulation to create new
3D landmarks on the map.

Another commonly used visual odometry method is the direct method. Instead of matching the
extracted features, the direct method directly estimates the relative pose among different frames by
minimizing the photometric error. Despite its advantage in efficiency, robustness to featureless scenarios,
and the ability to construct dense or semi-dense geometric maps, the direct method heavily relies on
the photometric invariance assumption and may be more vulnerable to scenarios of varying or complex
illumination than the feature method.

Although the two methods can work well in many scenarios, they suffer from caused by weak robustness
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Figure 4 (Color online) Example of the epipolar geometry-based feature method. The camera takes two frames successively and

its pose changes from O to O′. First, a total of six feature points (i.e., p1, p2, p3, p′
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3
) are detected from the two frames.

Using the feature descriptor, three pairs of matched features are generated, including (p1, p
′

1
), (p2, p

′

2
), and (p3, p

′

3
). The epipolar

geometry assumes that each pair corresponds to a static 3D landmark whose coordinate is unknown. The relative camera pose

between O′ and O is obtained under such an assumption. Finally, the coordinates of the 3D landmarks (P1, P2, and P3) are

obtained via triangulation.

to dynamic scenes and lighting/weather conditions. Traditional methods [15,23–31] have been proposed to
work around the issue by optimizing brightness/photometric info. However, the robustness improvement
from these hand-crafted strategies is relatively limited. To meet these challenges, many deep-learning
methods have been developed. To handle dynamic scenes, researchers propose to identify non-rigid
contexts via semantic segmentation and then cull points of non-rigid contexts from the feature or pixel
set used by visual odometry. An early effort on non-rigid context culling (NRCC) is Pair-Navi [32], a
peer-to-peer indoor navigation system based on trajectory sharing between leader and followers in visual
SLAM. A later system known as EdgeSLAM [33] enables the process running on resource-constrained
mobile devices by strategically offloading the NRCC task to powerful edge servers. For the challenge of
dynamic lighting/weather conditions, recent studies propose to replace the original intensity values or
handcrafted descriptors with deep feature descriptors [34, 35].

• LiDAR odometry. Deep learning-based visual SLAM has made progress, but light detection
and ranging (LiDAR)-based SLAM is popular in industry due to its better performance in challenging
conditions like fog and varying light [16]. LiDAR creates point clouds, which are collections of points
with precise angle and distance data. It works by sending out laser beams and measuring their return
time [17]. LiDAR odometry calculates movement by matching features in point-cloud maps from different
times. LiDAR systems come in 2D and 3D types: 2D is used for simple indoor spaces, while 3D is better
for complex outdoor areas with more spatial information.

The key to processing LiDAR odometry is scan matching, which determines the position of an agent by
analyzing consecutive LiDAR scans of point-cloud maps. Similar to visual odometry, LiDAR odometry
can be categorized into (i) direct methods, (ii) feature-based methods, and (iii) deep learning-based
methods, depending on how scan matching is performed [36].

The direct methods are a kind of method employed to estimate motion by directly comparing point
cloud data obtained from LiDAR scans. Unlike other matching methods, such as feature methods, direct
methods eschew the extraction of specific features from the point cloud. Instead, it leverages the entirety
of the point cloud data for alignment. The primary objective of these methods is to estimate the sensor’s
motion trajectory by minimizing the geometric discrepancies between consecutive point clouds [37]. There
can be two mainstream direct methods for LiDAR odometry: ICP and normal distributions transform
(NDT). ICP iteratively matches points in one cloud to the nearest points in another, updating the
transformation to minimize distances between corresponding points until convergence [38]. It is simple
and effective, though sensitive to initial alignment and noise.

Feature-based methods in LiDAR odometry extract and match distinct features from point clouds to
estimate motion. They focus on specific geometric structures like edges, corners, or planes, improving
efficiency and accuracy compared to direct methods that use the entire point cloud. These features are
matched across consecutive scans to determine relative motion. LOAM [39, 40] is a popular method
that extracts edge and planar features, matching them to estimate motion and build a map. It balances
real-time performance and accuracy. LeGO-LOAM [41], an extension of LOAM for ground vehicles,
optimizes feature extraction and matching, targeting flat ground surfaces for efficiency. R-LOAM [42]
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further extends LOAM by incorporating prior knowledge of a reference object to enhance localization
accuracy. It uses a known 3D model and its global position, adding mesh features to point features for
optimization. R-LOAM employs an axis-aligned bounding box tree for efficient mesh feature matching,
reducing absolute pose error and improving map quality.

Deep learning methods for LiDAR odometry are becoming more popular as they can improve accuracy
and efficiency in motion estimation and mapping [43–46]. LO-Net [47] is a real-time deep learning frame-
work that uses a convolutional network to learn features and capture data dynamics. It includes a special
loss function and a scan-to-map module to enhance accuracy. Another approach by Liu et al. [48] used
a bird’s eye view projection and deep learning for accurate motion estimation. Their method addresses
common challenges and outperforms traditional SLAM methods on the KITTI dataset, achieving low
drift over long distances.

• Radio odometry. Radio odometry utilizes radio signals to estimate position and movement. It
employs various radio technologies such as WiFi, ultra-wideband (UWB), and millimeter wave (mmWave)
to determine the agent’s location and trajectory. By measuring and analyzing the strength, delay, ToA,
and relative position of radio signals, radio odometry can provide accurate positioning and navigation
information [49, 50].

WiFi-based SLAM is valuable for research and daily life due to its widespread coverage. Liu et
al. [51] presented C-SLAM-RF, a system using WiFi RSS and smartphone-based PDR for large indoor
environments. Arun et al. [52] introduced P2SLAM, which uses WiFi for indoor SLAM to address issues
with other sensors in certain environments. It extracts features from WiFi signals and integrates them
with odometry. Recently, WAIS [53] was proposed, combining WiFi sensing with Visual-SLAM to reduce
computational and memory needs. WAIS improves accuracy while significantly reducing resource usage,
and provides an open-source toolbox called WiROS for WiFi measurements.

UWB and mmWave technologies offer higher precision localization due to their shorter wavelengths.
Wang et al. [54] combined UWB with visual-inertial odometry to create drift-free maps in real-time, even
in challenging environments. Cao et al. [55] used multiple UWB nodes for relative localization between
robots, improving accuracy through optimization. For mmWave, Palacios et al. [56] proposed CLAM, a
distributed SLAM algorithm for 5G networks that addresses beam-training and device association chal-
lenges. He et al. [57] presented a low-cost mmWave SLAM scheme that achieves submeter-level accuracy
without extensive hardware requirements. These approaches demonstrate how UWB and mmWave can
enhance localization and mapping in various scenarios.

Radio offers wide applicability and low power use, making it promising for odometry [50]. Researchers
are exploring various radio technologies like Bluetooth [4], radio frequency identification (RFID) [58],
and Zigbee [59], or combining them [60] for better localization and motion estimation. GPS is usually
combined with other sensors rather than used alone for odometry [61, 62]. When used with inertial
measurement units (IMUs), cameras, LiDAR, or other radio systems, GPS fusion can improve odometry
and navigation accuracy.

• Inertial odometry. Inertial odometry is a method of estimating the position and orientation
changes of agents using data from an IMU. By integrating the acceleration and angular velocity data
provided by the IMU, the agent’s velocity and position can be computed. Compared to visual odometry
and LiDAR odometry, inertial odometry is commonly used in environments where external signals are
unreliable or unavailable, such as underground, indoors, or other GPS-denied environments.

TLIO [63] proposes an extended Kalman filter (EKF) framework for IMU-only state estimation, in-
tegrating relative state estimates from IMU measurements with a neural network that regresses 3D
displacement estimates and their uncertainties. This method addresses the significant drift caused by
sensor bias and noise, outperforming traditional velocity integration and AHRS filters in position and
orientation estimation. Chen et al. [64] used deep recurrent neural networks to estimate user displace-
ment from raw inertial measurements, formulated as an optimization problem. It addresses error growth
and dependency on fixed sensor positions or periodic motion patterns. The method demonstrates high
accuracy in diverse conditions, including non-periodic motions like shopping trolley tracking and dynamic
activities like running. DUET [65] is a deep learning-based IMU online calibration method designed to
compensate for runtime errors in accelerometers and gyroscopes, improving inertial-based odometry. By
using a differential error learning strategy, it learns sensor errors from displacement and orientation incre-
ments, mitigating integration errors during odometry computation. Experiments on public visual-inertial
datasets show a 20% improvement in position estimation accuracy, comparable to existing methods but
with lower complexity.
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Figure 5 Typical workflow of visual loop closure detection.

As previously mentioned, inertial odometry provides high-frequency data updates, allowing it to quickly
respond to dynamic changes in extreme environments [66]. However, due to the nature of integration,
unbounded error drifts in inertial odometry accumulate over time, posing a major challenge. Therefore,
IMUs typically play a supplementary role in odometry, often combined with other methods like visual
odometry [67] and LiDAR odometry [68]. By providing high-frequency motion information (e.g., angular
velocity and acceleration), IMUs compensate for the shortcomings of other sensor data, enhancing the
accuracy and robustness of the system’s localization and mapping. These studies will be elaborated on
later.

• Odometry accross different modalities. Visual odometry excels in detailed environment map-
ping and loop closure detection, LiDAR odometry provides high-precision measurements under adverse
illumination conditions, radio odometry offers wide applicability and low power consumption, and inertial
odometry delivers high-frequency updates. Combining these methods to establish multimodal odometry
enhances the overall system’s robustness and accuracy, compensating for the individual limitations of
each sensor type [69–72].

Combining visual and LiDAR odometry is a natural progression in the field [73–75]. Zhang et al. [76]
used visual odometry for initial motion estimation and LiDAR for refinement, improving robustness and
accuracy in challenging conditions. Environmental features like lines [77] and planes [78] have become
more important, enhancing vision-LiDAR fusion in complex environments. Recently, NALO-VOM [5],
a LiDAR-guided monocular visual odometry system for UGV navigation, addresses sparse environment
maps in traditional methods. It uses a plane prediction network trained on LiDAR data to achieve
scale-consistent camera poses and a semi-dense map, improving navigation capabilities.

IMUs are often combined with other sensors for odometry, providing high-frequency motion data
for real-time calibration. In visual-inertial odometry [79, 80], ESVIO [81] introduces event-based stereo
visual-inertial odometry, using event streams, standard images, and inertial measurements. It includes
ESIO for event-based processing and ESVIO for integrating image-aided event streams, improving state
estimation in challenging environments. For LiDAR-inertial odometry [82, 83], AdaLIO [84] tackles pa-
rameter degeneracy in narrow spaces by dynamically adjusting voxelization and normal vector estima-
tion based on IMU-detected environment types. This approach improves odometry in confined spaces,
as shown in public datasets. LiDAR, visual, and inertial odometry fusion combines the strengths of all
three sensors [85, 86], addressing issues often found in LiDAR-inertial methods [72]. LVIO-Fusion [87]
integrates LiDAR-visual-inertial odometry and mapping for robust state estimation and precise map-
ping in challenging environments. It combines dynamic voxel mapping LiDAR-inertial odometry with
direct image projection for optical flow matching, and visual-inertial odometry with coarse-to-fine state
estimation. Evaluations demonstrate its superior accuracy and robustness in challenging scenarios.

Process II. Loop closure detection. When the agent revisits a previously visited place, it should
be able to detect the loop ideally, with which it can optimize the estimated pose and the reconstructed
3D environment. However, as odometry aims to estimate the relative pose, the estimation drift will
accumulate over time and may lead to an unrecognized loop. By employing the loop closure detection
technique to identify the loop, the loop can be closed and lead to a more accurate perception of the
geometric structure as well as the agent’s pose.

• Vision-based methods. The common workflow of vision-based (or appearance-based) loop closure
detection is shown in Figure 5. The camera continuously takes images of the surrounding environment.
Keyframes (i.e., It0, It1, . . . , Itn) are then sampled from the stream of images, using sampling strategies
such as uniform sampling in time [88], uniform sampling in space [89], and uniform sampling in appear-
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ance [90]. The feature descriptors [91–93] of these keyframes are extracted and then stored in the feature
database. The same feature extractor is employed for the current frame Ic, and the generated feature de-
scriptor Fc is matched with those in the feature database. If Fc is very similar to some feature descriptor
in the database, a more stringent geometric verification may be further employed to avoid false positive
detections.

• LiDAR-based methods. As demonstrated in odometry, it is noted that compared to visual sensors
(e.g., RGB cameras), LiDAR provides more robust perceptual information under varying illumination
conditions. However, in loop closure detection, LiDAR point clouds only contain geometric information
and lack the rich information present in images that is essential for place recognition [94]. Consequently,
LiDAR-based methods are relatively rare in current research. The workflow of LiDAR-based loop closure
detection is similar to that of vision-based methods, with feature descriptors for LiDAR-based methods
primarily including histogram-based descriptors and segmentation-based descriptors. Histogram-based
descriptors represent point cloud maps as histograms, such as a set of normal distribution [95, 96] and
3D Gestalt descriptors [97]. Segmentation-based descriptors calculate object information as a prepro-
cessing step, representing point cloud maps as semantic objects [98–100], which significantly reduces
matching time. Recently, PADLoC [101] is proposed as a novel method for joint loop closure detection
and registration in LiDAR-based SLAM, using a transformer-based head for point cloud matching and a
unique loss that reframes the matching problem as a classification task for the semantic labels.

• Radio-based methods. As radar sensors benefit from widespread deployment and the high-
precision mapping capabilities, radio-based loop closure detection, though less studied than vision-based
and LiDAR-based methods, has garnered increasing attention in recent years [102]. Compared to images,
radar images have less distinctive pixel-level features for descriptors and are affected by multi-path reflec-
tion problems, making radio-based loop closure detection more challenging. RadarSLAM [103] utilizes
M2DP [37], a rotation-invariant global descriptor, to represent FMCW radar images initially converted
to point clouds. In M2DP, the left and right singular vectors of the density signatures of the point cloud
are used as descriptors. To reduce cumulative errors in radio-based loop closure detection for multi-path
SLAM, Gao et al. [104] proposed Wi-Loop SLAM, including a delayed selection strategy and a Bayesian
model with a particle-based sum-product algorithm (SPA) to ensure accurate loop optimization, effec-
tively correcting state estimate drift in environments with obscured propagation paths. For robust SLAM
in large-scale environments, TBV [105] introspectively verifies loop closure candidates by combining mul-
tiple place-recognition techniques [106,107] and delaying loop selection until after verification, addressing
the challenge of false constraints and integrates this with a robust odometry pipeline.

• Loop closure detection across different modalities. Like odometry, multi-sensor fusion meth-
ods can combine the advantages of different modalities to achieve more robust loop closure detection
performance [108–111]. VINS-Mono [112] utilizes DBoW2 [113], a state-of-the-art bag-of-words place
recognition approach, for loop detection with image frames and uses IMUs to achieve high-frequency
state estimation for closed-loop closure. For LiDAR-inertial systems, Shan et al. [114] implemented Eu-
clidean distance-based loop closure detection on point cloud maps, where IMUs are used to estimate the
agent’s motion to de-skew point clouds and serve as an initial guess for LiDAR odometry optimization.
Then, LVI-SAM [85], a framework for tightly-coupled lidar-visual-inertial odometry, proposes a two-step
method where loop closures are first identified by the visual-inertial system and further refined by the
LiDAR-inertial system. Recently, Chghaf et al. [115] presented a novel approach to loop closure detection
in SLAM by leveraging multiple modalities through similarity-guided particle filtering (SGPF) for the
search, integrating bag-of-words for camera-based and scan context for LiDAR-based place recognition.
TS-LCD [116] is introduced as a multi-sensor fusion-based loop-closure detection scheme, employing a
timestamp synchronization method based on data processing and interpolation, and a two-order loop-
closure detection scheme for the fusion validation of visual and laser loops.

Process III. Backend. In essence, odometry and loop closure detection solve the problem of short-
term and long-term data association, respectively. As data from different modalities have distinct char-
acteristics, different methods are proposed to handle data association for different modalities. Despite
the significant differences in odometry and loop closure detection methods used for different modalities,
the back-end optimization techniques employed are highly consistent across these modalities. The reason
is that the backend simply utilizes the data association relationship provided by the front-end modules
to construct the observation equation (detailed below).

Formally speaking, the goal of the backend is to estimate the values of the unknown xk (the state of the
agent and the coordinates of observed landmarks at time step k) given zk (the observation data related
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to landmarks) and uk (the data of a motion-related sensor such as an IMU or a wheel encoder). Two
fundamental equations are commonly used to describe the state estimation process. One is the motion
equation

xk = f(xk−1, uk) + wk (2)

with f abstracting the motion process and wk ∼ N (0, Rk) denoting the random noise. The other is the
observation equation

zk = h(xk) + vk (3)

with h abstracting the observation process and vk ∼ N (0, Qk) denoting the random noise. The cor-
respondence between zk and xk is provided by the modality-specific front-end module. The common
optimization goal is maximum a posteriori (MAP), i.e., maximizing the probability P (x|z, u). With
reasonable approximations, the MAP problem can be refactored as a least square problem

argmin
x,y





∑

k

||f(xk−1, uk)− xk||
2
Rk

+
∑

k,j

||h(yj , xk)− zk,j ||
2
Qk,j



 . (4)

A common solution to the problem is the Kalman filter [117]. The Kalman filter performs estimation
in an incremental manner. At each time step k, the Kalman filter estimates the value of xk and does not
aim to update the previous unknown variables (i.e., x0, . . . , xk−1) with the latest data (i.e., zk and uk).

The estimation at time step k consists of two steps. The first step predicts the a priori state estimation
x̂−
k following the motion equation (2). The second step corrects the a priori state estimation x̂−

k to obtain

the final estimation result — the a posteriori state estimation X̂k. The correction is achieved via

x̂k = x̂−
k +Kk(zk − h(xk)). (5)

Intuitively, zk−h(xk) acts as a feedback signal reflecting the difference between the predicted observation
h(xk) and the actual observation zk.

However, the Kalman filter is initially designed for the simple case of fixed and linear motion and
observation processes as well as known Gaussian noises, so it does not lead to optimal results in real-
world SLAM systems of more complexity. Many variants of the Kalman filter are proposed to handle the
challenge and a relevant survey can be found in [118].

Another mainstream solution to the backend is graph-based optimization. In graph-based optimiza-
tion, vertices represent unknown variables while edges represent motion and observation equations. The
optimization goal of graph-based optimization is still an MAP or equivalently a least square problem,
but graph-based optimization shares several differences with the Kalfam filter or its variants. First,
graph-based optimization typically solves the problem via non-linear optimization methods such as the
Gauss-Newton method and the Levenberg-Marquardt method, which are more memory-efficient and thus
more suitable for large-scale environments than the Kalman filter or its variants. Second, graph-based
optimization can update an unknown variable based on its past, current, and future equations, while
the Kalman filter or its variants operates incrementally, i.e., only updating the estimation of the current
pose based on the current motion and observation. Consequently, graph-based optimization can achieve
a higher accuracy. Due to the above advantages, graph-based optimization has gained more popularity
recently and has been integrated into several well-known SLAM systems, such as maplab [119, 120] and
ORB-SLAM3 [121].

2.2.2 SfM

SfM is somehow similar to SLAM — it also tries to reconstruct the 3D environment from a series of
sensor data. However, the two concepts are not the same as they share some differences. First, SfM
puts more emphasis on reconstruction than on localization and puts more emphasis on reconstruction
accuracy rather than reconstruction throughput. Second, due to the looser requirements on reconstruction
throughput, SfM approaches can be used to reconstruct an extremely large environment. For example,
a worldwide 3D SfM point cloud has been constructed by processing 9.2 billion panoramic images from
Google street view [122], and a world-scaled SfM-based modeling is achieved by operating on the Yahoo
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100 million image dataset [123]. Third, the input data of the SfM problem is more irregular — the data
may be captured by different sensor models and their capturing time may be unordered. For example,
the aforementioned Yahoo 100 million image dataset is created by collecting user-uploaded images and
videos from Yahoo’s Flickr image and video sharing platform [124]. In contrast, SLAM involves a set of
ordered sensor data from a fixed sensor (or a fixed set of sensors in the case of multi-modal SLAM).

Traditional applications of SfM include geosciences and cultural heritage documentation. As more and
more camera-equipped autonomous vehicles are appearing on the road, researchers have proposed to use
SfM to reconstruct urban scenes offline from crowdsourced images recently [125], and the reconstructed
scenes, in turn, can guide navigation of these autonomous vehicles online. The impact of various camera
setups, weather conditions, and algorithms on the reconstruction quality is investigated. Several useful
guidelines regarding the data collection are further proposed based on the investigations aforementioned.

With the prevalence of GPS-equipped smartphones, crowdsourcing has been the de facto method for
real-time accident detection and road condition monitoring of many online map service providers such
as Google maps [126]. Similarly, as more and more autonomous vehicles and mobile robots are deployed,
crowdsourcing-based SfM may be the de facto method for creating and updating the point clouds of
public outdoor and indoor environments, which can be used to guide the navigation of embodied agents.
However, many issues remain to be resolved to build a practical crowdsourcing-based and SfM-powered
map service for embodied navigation. First, uploading all the collected video frames is rather expensive
considering the cellular data cost, so an effective strategy must be used to upload only the most cru-
cial frames or regions of interest. Second, downloading the point cloud data in real-time for navigation
challenges the bandwidth of existing network infrastructure. Possible remedies include bitrate-adaptive
point cloud downloading [127,128] and point cloud compression [129]. Third, aligning reconstructed point
clouds of outdoor environments with real-world dimensions (i.e., scale and orientation) can be fulfilled by
using GPS coordinates [125]. However, aligning reconstructed point clouds of indoor environments should
be based on other types of wireless signals such as WiFi [130–132] and Bluetooth Beacon signals [133,134],
as GPS suffers significant obstructions and distortions inside buildings. Yet, wireless indoor localization
itself still faces several challenges [135], including the low accuracy [136], heavy dependence on infras-
tructure (such as WiFi fingerprinting maps [137] and Bluetooth Beacon-enabled hardware [133,138]). We
foresee the need for numerous future studies to realize the grand vision of a crowdsourcing-based and
SfM-powered large-scale map service for outdoor and indoor embodied navigation.

2.2.3 Self-localization

In this part, we focus on the scenario where an agent tries to navigate through a known environment. Here
we claim an environment to be known if it has already been explored and a corresponding map has been
constructed in advance. The map may be constructed by different programs, such as the SfM program
on a server and the SLAM program on other agents. Instead of mapping the environment from scratch,
the agent only needs to localize itself in the readily available map. Such an offline mapping paradigm
has already been adopted by many autonomous driving solutions. For example, the Baidu Apollo high-
definition map [139] currently covers more than 11 million kilometers of roads across more than 360 cities
and has served more than 100 million daily requests. The benefits of such a paradigm are multi-fold.
First, the computation overhead on the agent is reduced as the computation-intensive mapping process
is avoided. Second, different from SLAM, the map construction process in such a paradigm has a looser
requirement on the throughput, so more computation-intensive construction methods such as SfM can
be used to provide a more accurate map for the agent.

To achieve the goal of self-localization the agent uses the sensor to capture some data and then match
the data with the offline map. Based on the involved sensor type, we divide existing studies into visual-
based methods and WiFi-based methods. We do not discuss LiDAR-based methods here as they have
already been discussed in a recent survey [140].

Visual methods. The conventional pipeline of visual localization contains two steps. The first step
associate pixels in the query image (i.e., the image whose pose needs to be estimated) to the 3D points
in the map. The correspondence can be identified through handcrafted feature descriptors [19–21] or
learned feature descriptors [35, 141]. The second step involves a geometry-based pose-solver (e.g., PnP
and RANSAC) to estimate the pose based on the identified correspondence.

One main issue of the above pipeline is the high latency of the correspondence matching process, which
contains a few sub-steps including feature detection, feature description, and feature matching. Besides,
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the accuracy of the above pipeline is limited as the correspondence matching process may not always
be reliable due to factors such as environmental changes. Therefore, a new approach known as scene
coordinate regression (SCR) has been proposed. Instead of using feature descriptors for matching, SCR
directly feeds the query image to a random forest [142–144] or a neural network [145] to obtain the per-
pixel scene coordinates of the query image. Despite the higher accuracy than the conventional pipeline,
SCR suffers the generalizability issue as the information about the 3D scene is encoded into the learned
weights of the random forest or deep neural network (DNN). SANet [146] avoids this issue by designing
a scene-agnostic network where the 3D scene is fed to the deep network together with the query image.
Neither retraining nor fine-tuning is required for SANet to adapt to new scenes.

Another solution that has gained much attention recently is absolute pose regression (APR). APR aims
to obtain the pose of the given query image in an end-to-end fashion and does not employ a geometry-
based pose solver. Despite its conceptual simplicity, APR methods currently face two challenges. First,
their accuracy is limited compared to methods incorporating a geometry-based pose solver. Second,
they suffer the overfitting issue and thus require retraining or fine-tuning. The state-of-the-art method,
marepo [147], still requires minutes of training to adapt to a new scene. In summary, more research is
required to further improve the APR.

WiFi-based methods. In addition to being one of the most common network access technologies,
WiFi has also been used by many map service providers (e.g., Google maps and AMAP [148]) to provide
localization service in indoor environments, where the GPS signal is occluded and GPS-based localization
is inaccurate. Compared to methods based on cameras or LiDARs, WiFi-based indoor localization has a
few unique advantages. First, WiFi-based methods are free of drift accumulation as they localize WiFi
devices (e.g., smartphones and WiFi-enabled robots) by using the WiFi access points (APs) as anchors.
Second, WiFi-based methods are robust to complex indoor environments with illumination changes and
plain visual textures. Third, WiFi-based methods have a much lower computation and energy overhead.

A common method ofWiFi-based 2D localization is to utilize geometric constraints, such as the distance
or the angle between the WiFi device and one or multiple APs. With such geometric constraints, the
location of the WiFi device can be easily inferred through geometric algorithms such as trilateration.
An analysis of the WiFi radio signal is typically required to obtain these geometric constraints. For
example, the fine-grained channel state information (CSI) feature of the signal can be used to infer the
distance [149]. The angle between the WiFi device and one or multiple APs can be inferred when the AP
or the device has an antenna array and consecutive antennas in the array have a phase difference related
to the radio signal’s angle [150].

Although geometric methods are intuitive, their performance may degrade in complex indoor environ-
ments with rich multipath. Basically speaking, multipath is the phenomenon where reflectors (e.g., walls
and floors) in the environment cause the radio signals to reach the receiver from multiple paths. Accu-
rately modeling rich multipath for geometric localization is challenging, so many methods alternatively
follow the idea of fingerprinting-based localization. The core idea of fingerprinting is to construct a fin-
gerprint database that consists of fingerprints (i.e., signal features such as CSI) at different locations in
the environment. The localization problem is solved by comparing the measured feature at the unknown
position with fingerprints in the database to estimate the position. The process of building and updating
the database is labor-intensive, and thus various methods (e.g., crowdsourcing-based methods [131,132])
have been proposed to relieve the overhead.

Most WiFi-based methods in the literature are only capable of estimating the 2D position of the WiFi
device. Some recent methods are able to estimate the position as well as the orientation of the WiFi
device, which can provide more information to WiFi-enabled agents to help them better navigate through
the environment. MonoLoco [151] uses a novel geometric algorithm known as multipath triangulation
to simultaneously estimate its 2D position and azimuth (i.e., the angle of rotation in the 2D plane).
Wi-Drone [7] achieves the 6-degree-of-freedom (6-DoF) pose estimation of the WiFi-enabled drone by
designing two 6-DoF tracking algorithms and fusing the two algorithms via the factor graph.

2.2.4 Target localization

With the target’s location perceived, the agent can take appropriate actions to navigate toward the target.
Here we mainly focus on complex scenarios where the target is occluded or cannot be effectively identified
by its visual appearance due to the existence of similar objects in the environment (e.g., many visually
similar books in a library). Depending on the way the information about the target’s position is passed



Liu Y H, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 141101:13

to the agent, target-oriented geometric perception can be categorized into audio-based methods and
methods based on RFID. As discussed later, audio-based methods are more suitable for home assistant
robots while RFID-based methods are more suitable for industrial robots.

Audio-based methods. Audio-based target-oriented geometric perception typically assumes the
navigation target is emitting sound and utilizes the sound signal to localize the target that may be visually
unobservable due to occlusions. Audio-based perception is useful for home assistant robots as the robots
can navigate to a talking human or a ringing phone. To decrease the challenge of sound source localization
via deep learning, Gan et al. [152] proposed to train a sound perception module to estimate the relative
position between the target and the agent. A classification model is further trained to determine whether
the agent reaches the sound source. Besides, an acoustic engine is implemented to generate the sound
signal in the virtual environment. Similarly, Chen et al. [153] proposed to enhance navigation by utilizing
the sound signal emitted by the navigation target, but they use a more complex and more acoustically
realistic simulation engine and an end-to-end navigation model that does not explicitly predict the sound
source’s location. Later, Chen et al. [154] proposed an omnidirectional information-gathering mechanism
to collect visual-acoustic signals from many directions and achieve a large improvement in the navigation
capability.

RFID-based methods. We first give a brief introduction to RFID before discussing its role in
target-oriented geometric perception. A typical RFID system consists of two parts, an RFID tag and
an RFID reader. An RFID tag can store some sort of identification number and the number can be
retrieved by the RFID reader through radio signals. The identity of an item can be easily determined by
attaching an RFID tag to the item and recording the correspondence between items and identification
numbers in a database. A more detailed introduction to RFID can be found in [155]. In addition to
providing the identity information, the radio signal emitted from the RFID tag also implicitly indicates
the location of the tag [156–158], i.e., some characteristics (such as the phase value and the strength)
of the radio signal is related to the position of the tag and can thus be used to localize the RFID-
tagged item. RFID technology is very useful for target-oriented perception, especially in the context of
industrial robots. First, RFID technology has already been widely deployed in various industries such
as retail, manufacturing, agriculture, healthcare, and logistics. More than 44.8 billion RFID tags were
shipped globally in 2023 [159], so using the existing infrastructure of RFID for target-oriented perception
is feasible. In contrast, audio-based target perception may be suitable only for home robots rather than
industrial robots, as items in industrial applications are generally not equipped with any sound-emitting
components. Second, there exist numerous items of similar appearances in many applications, such as
books in library management, clothes in a clothing store, and parcels in logistics. It is even challenging for
skilled human operators to effectively distinguish these similar items by employing appearance information
alone, but the problem can be easily solved through RFID technology [160]. Third, compared to cameras
and LiDARs, the RFID signal can traverse everyday occlusions and enable the embodied agent to identify
a partially or fully occluded navigation target more efficiently.

Many early studies use RFID alone to fulfill target-oriented geometric perception. For example, Mo-
biTagbot [161] identifies the spatial order of multiple RFID-tagged items by roving around them and
analyzing phase values collected at appropriate locations. However, as RFID signals provide limited
information about the environment, using RFID alone will make it challenging for agents to achieve col-
lision avoidance or obstacle decluttering. RF-Grasp [162] addresses this issue by fusing the RFID signal
and the RGB-D image to guide the robot arm to explore the environment and grasp the target item.
Compared with the baseline that does not utilize RFID, RF-Grasp improves success rate and efficiency
by up to 40%–50%. Yet, RF-Grasp requires a separate RFID reader that needs to be calibrated with
the robot arm. RFusion [163] works around the limitation by integrating both the RFID reader antenna
and the camera onto the robot arm. Both RF-Grasp and RFusion utilize the RFID signal to localize
RFID-tagged systems. However, there may exist a mixture of tagged and non-tagged items in many real-
world scenarios. FuseBot [164] extends radio-based target perception to non-tagged items by excluding
the positions of tagged items from consideration.

One major limitation of the aforementioned RFID-based systems is that their performances are only
validated in a limited range or a constrained environment. MobiTagbot [161] requires a line-of-sight path
and the orientation match between the tagged item and the RFID reader, but the requirement may not be
satisfied in real-world scenarios. RFGrasp [162], RFusion [163], and FuseBot [164] assume the workspace
is a small table and the robot arm is on a fixed base. A lot more research is envisioned to further improve
the practicality of RFID-based target perception in complex real-world scenarios.
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Figure 6 Semantic understanding of perception.

2.3 Semantic understanding

After constructing a geometric environment using techniques such as SLAM, semantic mapping becomes
an essential process that assigns meaningful labels to different regions and objects within the environ-
ment. While the geometric map provides the physical layout, including the shapes and positions of
walls, obstacles, and pathways, semantic mapping enhances this by adding contextual information. This
additional layer of information allows the agent to understand what each area and object represents.
By incorporating semantic labels, the agent gains a richer understanding of its surroundings, enabling
it to perform more complex tasks, interact more naturally with humans, and navigate more efficiently
and safely. This sector of research delves into various aspects of the semantic tasks as in Figure 6, in-
cluding semantic labeling, which classifies each pixel of an image into meaningful categories; semantic
relation, which identifies and understands relationships between different entities in the environment; and
hyper-semantic enabled by multi-modal semantic integration, which combines data from various sensors
to create a comprehensive and cohesive understanding of the environment. Together, these advance-
ments enable more sophisticated and intuitive interactions, making semantic mapping an indispensable
component of modern navigation systems.

2.3.1 Semantic labeling

Semantic segmentation plays a crucial role in embodied navigation, where an agent must interact intelli-
gently with its environment. By assigning a class label to each pixel in an image, semantic segmentation
allows the agent to understand the layout of the scene, identify objects, and distinguish between navigable
and non-navigable areas. This granular understanding is essential for tasks like path planning, obsta-
cle avoidance, and object interaction, enabling the agent to navigate efficiently and safely in complex,
dynamic environments. Initially, semantic segmentation predominantly utilized convolutional neural net-
work (CNN)-based methods [3, 165–167] for object detection and scene understanding. However, with
the advent and rapid advancement of transformer architectures, the current mainstream approaches for
semantic segmentation have increasingly shifted towards leveraging transformers. These architectures
have demonstrated superior performance in capturing long-range dependencies and contextual informa-
tion, which are crucial for accurate semantic segmentation tasks. In the following section, we will delve
into the semantic segmentation techniques that are based on transformer architectures, highlighting their
methodologies and the improvements they bring to the field.

Transformer architectures have revolutionized semantic segmentation by adapting to image inputs,
as demonstrated by Dosovitskiy et al. [168]. This adaptability has enabled the use of transformers for
semantic segmentation, allowing for the effective processing of image patches to capture long-range de-
pendencies and contextual information, which are crucial for accurate segmentation. Later, Carion et
al. [169] demonstrated that transformer-based methods outperform traditional CNN and R-CNN ap-
proaches. Transformers excel in modeling global relationships within the image, leading to superior
performance in object detection and segmentation tasks. This improvement is attributed to the self-
attention mechanism in transformers, which captures intricate details and relationships between different
parts of the image more effectively than CNN-based methods. Furthermore, Zhang et al. [170] introduced
the Trans4Trans model, which highlights the capability of transformer-based methods to achieve better
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performance in detecting challenging transparent objects. This is particularly beneficial for applications
such as navigation assistance for visually impaired individuals, where identifying transparent obstacles
like glass doors is critical for safety. The Trans4Trans model’s dual-head design effectively segments both
general and transparent objects, showcasing the versatility and robustness of transformer architectures
in real-world scenarios.

2.3.2 Semantic relation

Semantic segmentation provides a foundational layer for autonomous agents to comprehend and navigate
their environments by partitioning images into semantically meaningful regions, enabling agents to dis-
tinguish between various objects and surfaces. However, beyond this initial step, there exist advanced
methodologies that leverage semantic segmentation data to further enhance the understanding of rela-
tionships between objects, thereby optimizing navigation efficiency. The ability to understand object
relationships provides several merits, such as predicting the presence of certain objects based on the
detection of related objects, making navigation more intuitive and effective, and improving the overall
robustness of the navigation system.

Wu et al. [171] introduced a method that combines Bayesian relational memory with semantic mapping
to improve navigation tasks. The system maintains a probabilistic map that captures relationships
between objects and their locations. By integrating semantic information within a memory framework, the
agent can make more accurate predictions about the presence and positions of objects. This probabilistic
approach facilitates better path planning and decision-making, leading to more efficient navigation. The
relationships between objects, captured probabilistically, help the agent to navigate more effectively by
anticipating the locations of related objects.

In the study by Mousavian et al. [172], high-level visual representations derived from semantic segmen-
tation and detection masks are used to train DNNs, capturing spatial layouts and contextual cues. These
networks achieve robust generalization and enable agents to navigate towards specified target objects
efficiently by understanding the relationships between segmented objects. Similarly, Yang et al. [173]
incorporated semantic priors using graph convolutional networks (GCNs) to encode knowledge about
object relationships and typical placements within environments. This predictive capability allows the
agent to make informed decisions about where to search for objects based on observed scene context,
even in previously unseen environments. Furthermore, in the study by Du et al. [174], transformer archi-
tectures are leveraged to process image inputs, capturing both local and global contextual information.
The self-attention mechanism in transformers allows the agent to identify detailed object features and
their relationships within the scene, enabling high accuracy in navigation even in complex environments.
By modeling the relationships between objects through these advanced techniques, these studies collec-
tively demonstrate how semantic information can be used to build a comprehensive understanding of the
environment, facilitating more effective and efficient navigation.

2.3.3 Hyper-semantic

In recent years, advancements in multi-modal sensor technologies, including visual, auditory, and linguis-
tic inputs, have significantly enhanced our ability to collect and integrate diverse types of data, thereby
enabling more accurate and comprehensive semantic features of the environments other than object cate-
gories/relations. We refer to this as hyper-semantic. This fusion of data from multiple sensory modalities
represented in latent space makes it possible to create a more holistic understanding of the environment,
which is critical for the development of robust and adaptive intelligent agents.

The integration of vision and language represents a pivotal direction of hyper-semantic application
in embodied navigation, known as vision-and-language navigation (VLN), synthesizes advancements in
computer vision and natural language processing, aiming at equipping agents with the capability to
comprehend and execute complex natural language instructions within visually rich environments. Shah
et al. [2] introduced LM-Nav, a system that leverages large pre-trained models for navigation, vision,
and language without requiring fine-tuning in the target environment. LM-Nav utilizes models such
as GPT-3 for language parsing, CLIP for vision-language association, and ViNG for visual navigation,
demonstrating robust performance in complex, real-world environments. Similarly, Hao et al. [175] pro-
posed a pre-training and fine-tuning paradigm for VLN, using large datasets of image-text-action triplets
to improve generalization across various environments. In a related effort, the episodic transformer in-
troduced by Pashevich et al. [176] employed transformer models to handle long-term dependencies in
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Figure 7 Geometry-based and learning-enhanced approaches.

vision-and-language tasks, further advancing the capabilities of VLN systems. Additionally, VLN re-
search has explored the integration of embodied AI for task completion. For instance, the embodied
BERT model introduced by Suglia et al. [177] is designed to attend to high-dimensional, multi-modal
inputs for language-conditioned task completion, demonstrating significant improvements in performance
on tasks like those in the ALFRED benchmark.

Leveraging audio information for hyper-semantic has shown significant improvements in navigation
performance. For instance, Gan et al. [152] proposed a model where an agent integrates audio and visual
data to navigate toward a sound source, employing a visual perception mapper and a sound perception
module to construct spatial memory and infer sound locations. Similarly, Chen et al. [178] introduced
a method where the agent uses semantically meaningful audio cues, such as a door creaking, to guide
navigation, combining these cues with visual observations to maintain direction even after the sound stops.
Furthermore, the AVLEN framework by Paul et al. [179] focused on using audio, visual, and language
inputs in a multimodal approach, allowing the agent to localize audio events and seek assistance from
a human oracle through natural language when necessary. These methods collectively demonstrate that
incorporating audio data into navigation systems significantly enhances the agent’s ability to perform
complex tasks in dynamic environments. Additionally, the non-local fusion network (NLFNet) proposed
by Yan et al. [180] demonstrated the effectiveness of selectively fusing multimodal input information,
including RGB, depth, polarization, and thermal images into hyper-semantic information. This approach
improved the segmentation accuracy by leveraging the complementary information provided by different
optical sensors, thereby addressing the problem of object recognition in various challenging real-world
scenes. This work highlights the importance of integrating different optical information to complement
visual data, further enhancing the robustness of semantic identification.

3 Navigation

Embodied navigation is the critical component of embodied AI, and involves guiding agents through
physical environments to achieve specific goals. This section delves into various methodologies employed
in embodied navigation, categorizing them into geometry-based and learning-based approaches as in
Figure 7. Each approach brings unique advantages and challenges, reflecting the diverse strategies that
researchers employ to enhance navigation capabilities in embodied agents. We have provided a brief
comparison between the two types of approaches in Table 1.
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Table 1 Comparison of geometry-based and learning-enhanced approaches in embodied navigation.

Approach Geometry-based Learning-enhanced

Key techniques Map-based, graph-based

Reinforcement learning (RL),

imitation learning (IL),

vision-language models (VLMs),

large language models (LLMs)

Environment understanding
Detailed metric maps, topological graphs,

limited semantic maps

Learned policies, semantic maps enriched

with pre-trained models

Adaptability

Moderate (predefined structures,

some adaptability through

dynamic updates)

High (learning from

interactions)

Computational requirements
High for real-time updates of

maps and graphs

High for model training

and inference

Strengths
Accurate spatial understanding,

efficient pathfinding

Flexible, adaptable, capable

of handling complex tasks,

utilizes rich semantic priors

Weaknesses

Limited semantic understanding,

computationally intensive for

real-time updates

Requires significant training

data, computationally expensive

3.1 Geometry-based approaches

Geometry-based navigation methods rely on constructing and updating spatial representations of the
environment in real-time, without the use of reinforcement learning (RL) techniques. These methods
focus on creating and refining maps and graphs as the agent explores the environment, leveraging the
geometrical and topological structure to navigate efficiently. The core idea is to enable agents to build a
comprehensive understanding of their surroundings dynamically, facilitating effective navigation through
structured spatial representations.

3.1.1 Map-based navigation

Map-based navigation involves the creation and continuous updating of detailed maps that provide spatial
information about the environment. These maps, which can be occupancy grids enriched with semantic
information, are constructed dynamically as the agent explores. This process helps the agent understand
the spatial layout and locate objects within the environment. Occupancy grid maps partition the envi-
ronment into discrete cells, each indicating whether a location is occupied, free, or unknown. These maps
can also be enhanced with semantic categories and probabilities, offering a nuanced and comprehensive
representation of the environment.

The evolution of map-based navigation techniques can be traced through a series of seminal studies
that laid the foundation for this approach, followed by more recent advancements that have built upon
these early efforts.

The concept of occupancy grid mapping was first introduced by Elfes [1], providing a robust method for
handling sensor data and map construction. This approach used a probabilistic tessellated representation
of spatial information, which allowed the robot to integrate data from multiple sensors and different
viewpoints to incrementally update a coherent map.

Building on the foundations laid by occupancy grids, researchers explored efficient pathfinding al-
gorithms to optimize navigation. One of the earliest and most influential algorithms is the A* algo-
rithm [181], which combines features of Dijkstra’s algorithm and best-first search to find the shortest
path efficiently. A* uses heuristics to guide its search, making it faster and more efficient than Dijkstra’s
algorithm alone. Recognizing the need for adaptability in dynamic environments, Stentz [182] introduced
the D* algorithm, an extension of A* specifically designed to enable real-time updates of maps and paths.
This advancement was crucial for dynamic path planning, allowing robots to respond to changes in the
environment as they occurred. In parallel, the SLAM framework introduced by Leonard and Durrant-
Whyte [183] addressed the challenge of enabling robots to build maps of unknown environments while
determining their own location. This approach allowed for the concurrent construction of a map and
localization of the robot, a critical capability for autonomous navigation in uncharted territories.

As the field progressed, the integration of probabilistic methods became increasingly important. Thrun,
Burgard, and Fox’s “probabilistic robotics” [184] systematically presented probabilistic methods for robot
localization and mapping, including detailed discussions on occupancy grids. This comprehensive text
became essential for understanding and implementing map-based navigation techniques, emphasizing the
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importance of probabilistic approaches in handling uncertainties and integrating sensor data.

Recent advancements have significantly refined map-based navigation by integrating modern compu-
tational methods and richer datasets. For instance, Luo et al. [185] proposed the Stubborn method,
which introduced a semantic-agnostic exploration strategy and multi-scale collision maps, addressing key
challenges in exploration and object recognition within map-based frameworks. This approach demon-
strated that even without semantic understanding, robust navigation could be achieved through careful
exploration and collision avoidance techniques.

Similarly, Ramakrishnan et al. [186] developed the PONI method, a map-based approach leveraging
potential functions to decompose the navigation problem into manageable components, reducing com-
putational requirements while maintaining effective navigation capabilities. This method showed how
separating perception and movement can lead to more efficient navigation strategies.

Continuing this trend, Georgakis et al. [187] employed an innovative active learning framework in their
map-based method for creating and utilizing semantic maps. By actively selecting training samples to
maximize information gain, they significantly improved navigation efficiency. Their approach leveraged
uncertainty estimation and an upper confidence bound strategy to balance exploration and exploitation,
demonstrating superior performance in unknown environments and highlighting the benefits of combining
traditional mapping with active learning to enhance goal-directed navigation.

Also, the map-based approach by Zhu et al. [188] used semantic cues to predict distances to target
objects, selecting optimal intermediate goals and improving navigation paths. This method showcased
the potential of integrating semantic understanding with distance prediction to navigate efficiently in
previously unseen environments.

These advancements illustrate the continuous evolution of map-based navigation techniques. By build-
ing on foundational principles and integrating modern computational methods, researchers have signif-
icantly enhanced the robustness, efficiency, and capabilities of autonomous navigation systems. This
progression from early occupancy grid maps to sophisticated, dynamic, and semantically enriched navi-
gation strategies demonstrates the field’s ongoing innovation and adaptation to complex environments.

3.1.2 Graph-based navigation

Graph-based navigation methods represent the environment as a network of nodes and edges, where
nodes correspond to key locations or landmarks and edges denote navigable paths between them. This
topological representation allows agents to navigate by following paths through the graph, making de-
cisions at each node based on the available edges. Unlike map-based approaches that rely heavily on
metric maps and detailed spatial representations, graph-based methods focus on the connectivity and
relationships between different locations. This approach allows for more abstract and flexible navigation
strategies, especially in large and complex environments.

One of the early seminal studies in graph-based navigation is Kuipers’s “Modeling spatial knowledge”
(1978) [189], where he introduced the TOUR model. This model constructs cognitive maps that humans
use to navigate large-scale spaces through a network of interconnected nodes and edges. Kuipers’ work
laid the foundation for using graph structures in navigation, systematically formalizing the idea of rep-
resenting environments with nodes as key locations and edges as paths. This approach emphasized the
importance of partial knowledge states and gradual learning, significantly influencing subsequent research
in topological mapping and graph-based navigation.

Building on these foundational ideas, Thrun and Bücken [190] advanced graph-based navigation by
integrating grid-based and topological maps. They proposed a hybrid approach that constructs grid-based
maps using neural networks and Bayesian integration, then generates topological maps by partitioning the
grid into coherent regions connected by critical lines. This method effectively creates a graph structure
overlaid on a metric map, leveraging the precision of grid-based representations and the efficiency of
topological graphs. By combining these paradigms, their approach enhances the robot’s ability to plan and
navigate autonomously, enabling real-time navigation in complex environments with improved accuracy
and efficiency.

To further enhance the capabilities of graph-based navigation, recent advancements have introduced
GCNs. GCNs extend the concept of CNNs to graph-structured data, allowing for efficient processing and
analysis of non-Euclidean data. Introduced by Kipf and Welling [191], GCNs have been instrumental in
various applications, including navigation tasks. By leveraging the structural properties of graphs, GCNs
enable the extraction and utilization of rich relational information, facilitating more sophisticated and
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effective navigation strategies.
A notable application of GCNs in graph-based navigation is by Kiran et al. [192], who use spatial

relation graphs (SRG) and GCNs for object-goal navigation. Their framework learns an SRG from the
robot’s trajectories, modeling the proximity between regions and object occurrences. Bayesian inference
and GCN-based embeddings are then used to rank and select regions for exploration. Tested in the Mat-
terport3D benchmark within the AI Habitat environment, this method significantly improves navigation
accuracy and efficiency over state-of-the-art baselines.

Building on this, Liu et al. [193] proposed the ReVoLT framework, combining relational reasoning with
Voronoi local graph planning. This hierarchical approach uses GCNs and other methods to infer semantic
sub-goals and plan paths. Experiments in the AI Habitat environment show that ReVoLT significantly
outperforms existing methods.

The discussed studies highlight the evolution and refinement of graph-based navigation methods. These
approaches, which model the environment as interconnected nodes and edges, provide a flexible frame-
work for navigation, particularly in extensive and intricate environments. The advent of techniques like
GCNs has significantly improved the ability of agents to process and utilize relational information within
these graphs, thereby enhancing their navigation performance. These advancements underscore the ro-
bustness and adaptability of graph-based navigation in the realm of embodied AI, paving the way for
more sophisticated and capable navigation systems.

3.2 Learning-enhanced approaches

Learning-enhanced navigation approaches harness the power of machine learning to enable agents to
learn optimal navigation strategies through interaction with their environment. Unlike geometry-based
approaches, which rely heavily on constructing and updating spatial representations, learning-enhanced
methods focus on the agent’s ability to adapt and improve its navigation policy through continuous learn-
ing and experience. This subsection explores various learning-enhanced navigation strategies, emphasiz-
ing their distinctive reliance on learning for decision-making rather than solely on predefined geometric
structures.

3.2.1 RL & imitation learning (IL)

RL and IL are powerful techniques that enable agents to develop sophisticated navigation policies through
interactions within their environment. RL methods involve training agents to maximize cumulative re-
wards through trial and error, while IL involves mimicking expert demonstrations to achieve desired
outcomes. Unlike the geometry-based methods discussed in Subsection 3.1, which focus on creating de-
tailed spatial representations, RL and IL emphasize learning from interactions and experiences to improve
navigation strategies. We delve into the application of RL and IL in navigation tasks, highlighting key
advancements and methodologies that have enhanced the agent’s ability to navigate complex environ-
ments.

Moving forward from the foundational studies, the study by Chaplot et al. [167] introduced the Sem-
Exp method. This method builds an episodic semantic map using existing object detection and semantic
segmentation models, enabling the agent to navigate efficiently based on the goal object category by
leveraging semantic priors and long-term episodic memory. While earlier studies had incorporated se-
mantic understanding in navigation tasks, this pioneering approach significantly advanced the field by
demonstrating superior performance compared to a wide range of baselines.

Building on these early foundations, Ye et al. [194] explored the integration of auxiliary tasks and
exploration rewards to enhance object-goal navigation performance. By designing a series of auxiliary
tasks, the agent could better understand and explore its environment, thereby improving its navigation
efficiency. This study demonstrated the potential of multi-task learning and exploration rewards in
optimizing navigation strategies, marking another step forward in the evolution of RL and IL applications.

As the field continued to evolve, addressing the complexity of exploration tasks required innovative
solutions. To tackle the challenges of engineering effective reward functions and scalability, Ramrakhya
et al. [195] developed the Habitat-Web framework. This framework utilized a web-based application to
collect large-scale human demonstration data via crowdsourcing. The use of real human demonstrations
allowed the agent to learn complex navigation and manipulation tasks through IL, enhancing the robust-
ness and generality of the learned policies. This approach highlighted the importance of human data in
advancing navigation techniques.
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In parallel, addressing the issue of transferability and zero-shot learning in visual navigation, Al-Halah
et al. [196] proposed a plug-and-play modular transfer learning framework. This framework allowed
agents to leverage pre-trained models for various navigation tasks without requiring additional training
data. This method significantly improved training efficiency and task generalization, enabling agents to
perform zero-shot learning on new navigation tasks, thus bridging the gap between pre-trained models
and new environments.

Combining RL with IL to overcome the limitations of behavior cloning (BC) marked another significant
advancement. Ramrakhya et al. [197] developed the PIRLNav approach, which involved pretraining
policies using IL and fine-tuning them with RL. This combination addressed the poor generalization of
BC strategies and the high cost of collecting demonstration data, resulting in a more adaptable and
efficient navigation policy. This hybrid approach demonstrated the synergy between RL and IL, further
pushing the boundaries of navigation capabilities.

Further advancements in 3D-aware navigation emphasized the importance of learning from fine-grained
spatial information in 3D environments. Zhang et al. [198] proposed an approach that integrated simul-
taneous exploration and identification, allowing agents to construct detailed 3D environment models and
significantly enhance object-goal navigation performance. This innovation underscored the necessity of
detailed spatial understanding in achieving high navigation efficiency.

To address the challenge of limited interaction with experts, Singh et al. [199] introduced the Ask4Help
framework. This framework enabled agents to request help from experts when needed, allowing efficient
training without altering the original agent parameters. It achieved a balance between task performance
and expert assistance requests, reducing the overall cost of expert involvement. This method illustrated
the practical approach of leveraging expert knowledge to enhance training processes.

The aforementioned studies illustrate the significant advancements in applying RL and IL to navigation
tasks. Through the continuous improvement of learning algorithms and optimization strategies, RL and
IL have substantially enhanced the capability of agents to navigate complex environments. These methods
have proven essential in enabling agents to learn from interactions and experiences, thereby developing
robust and efficient navigation policies that can adapt to various challenges in embodied navigation.

3.2.2 Vision-language models (VLMs) & large language models (LLMs)

VLMs and LLMs integrate visual processing and natural language understanding to enhance navigation
capabilities. These models use large-scale pre-trained networks to interpret and generate both visual
information and natural language descriptions, enabling agents to follow complex instructions and make
informed decisions. Unlike geometry-based approaches that construct spatial representations and RL/IL
methods that learn from interactions, VLMs and LLMs combine semantic understanding with visual cues.

VLMs such as CLIP [200], ALIGN [201], and FLAVA [202] have enhanced visual semantic under-
standing by integrating visual and language features. Similarly, LLMs like GPT-3 [203], T5 [204], and
BERT [205] have demonstrated powerful capabilities in understanding and generating natural language.
The introduction of GPT-4 has further pushed the boundaries of what LLMs can achieve, with even
more sophisticated language processing abilities. These breakthroughs collectively enable the effective
application of VLMs and LLMs in complex navigation tasks. We explore how VLMs and LLMs, both
individually and together, facilitate navigation in complex environments.

Recent advancements in VLMs have demonstrated significant potential in zero-shot navigation. Ma-
jumdar et al. [206] introduced an approach using CLIP to create a visiolinguistic embedding space,
enabling agents to navigate in an open-world setting. This method addresses the closed-world assump-
tion in traditional ObjectNav by allowing agents to understand and navigate toward objects described
in arbitrary natural language terms, such as “flat-head screwdriver” or “bathroom sink”. Building on
the concept of zero-shot capabilities, another method by Zhou et al. [207] further enhances navigation by
integrating soft commonsense constraints. This approach leverages multimodal goal embeddings created
using the CLIP model, improving the agent’s performance in unfamiliar settings and enabling robust and
flexible navigation in open-world environments.

LLMs have also made significant strides in navigation tasks through their advanced language under-
standing and reasoning capabilities. The framework proposed by Zhou et al. [208] utilized the explicit
reasoning capabilities of GPT-4 to handle complex VLN tasks. This model excels in intricate planning,
common-sense reasoning, and handling unexpected events, thereby enhancing the agent’s ability to nav-
igate through detailed instructions and dynamic environments. Complementing this, another framework
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Table 2 Comparison of success rates and SPL for object-goal and vision-language navigation methods.

Method Dataset Success rate (%) SPL Dataset Success rate (%) SPL

Stubborn [185] MP3D (val) 23.7 0.098 MP3D (test-standard) 23.7 0.098

PONI [186] MP3D (val) 31.8 12.1 MP3D (test-standard) 20.01 8.82

L2M-Active-Upper [187] MP3D (val) 34.3 13.3 – – –

DP (distance prediction) [188] MP3D (val) 43.8 23.2 – – –

SRG-GCN [192] MP3D (val) 75.1 53.0 – – –

ReVoLT [193] MP3D (val) 66.7 26.5 – – –

SemExp [167] MP3D (val) 36.0 14.4 MP3D (test-challenge) 25.3 10.2

AuxTask [194] MP3D (val) 34.4 9.58 MP3D (test-standard) 24.5 8.1

Habitat-Web [195] MP3D (val) 35.4 10.2 MP3D (test-standard) 27.8 9.9

Plug&Play [196] MP3D (test) 14.6 10.8 HM3D (test) 9.6 6.3

PIRLNav [197] HM3D (val) 61.9 27.9 HM3D (test-standard) 65.0 33.0

3D-Aware [198] Gibson (val) 74.5 42.1 MP3D (val) 34.0 14.6

Ask4Help [199] RoboTHOR (val) 81.6 24.3 – – –

ZSON [206] Gibson (val) 31.3 12.0 HM3D (val) 25.5 12.6

ESC [207] MP3D (val) 28.7 14.2 HM3D (val) 39.2 22.3

NavGPT [208] R2R (val unseen) 34.0 29.0 – – –

VELMA [209] Touchdown (val) 23.4 – Map2seq (val) 41.3 –

VLMaps [210] MP3D (val) 59.0 34.0 – – –

LM-Nav [2] Real-world 80.0 – – – –

by Schumann et al. [209] explores the embodiment of LLM agents for vision and language navigation in
street views. By emphasizing verbalization, this method allows the agent to effectively interpret and ex-
ecute navigation instructions in street-level environments, demonstrating practical applications of LLMs
in real-world navigation scenarios.

Integrating VLMs and LLMs offers a synergistic approach that leverages the strengths of both models.
Huang et al. [210] introduced a method that creates visual language maps (VLMaps) for robot navigation
by combining VLMs and LLMs. The VLM generates visual-language embeddings from the robot’s video
feed, while the LLM processes instructions to ground these goals in the visual context, enhancing un-
derstanding and navigation precision. This method allows robots to follow detailed spatial instructions,
enabling precise navigation in complex environments. Shah et al. [2] developed the LM-Nav framework,
which employs pre-trained models of language, vision, and action for robust robotic navigation. This
framework uses CLIP as the VLM to associate images with textual landmarks and GPT-3 as the LLM
to parse and translate instructions. By correlating image-language data and executing actions based on
this combined understanding, LM-Nav bridges the gap between visual comprehension and language rea-
soning. This integrated approach enhances the robot’s ability to handle complex, real-world navigation
tasks, demonstrating the powerful synergy between VLMs and LLMs.

The integration of VLMs and LLMs significantly enhances the capabilities of navigation systems by
combining visual semantics with advanced language processing. VLMs excel in creating rich visual-
language embeddings that allow for zero-shot navigation in open-world settings, while LLMs provide
powerful reasoning and language understanding for interpreting complex instructions. Together, these
models enable robust and flexible navigation strategies, as demonstrated by approaches like VLMaps
and the LM-Nav framework. These methods highlight the synergistic potential of VLMs and LLMs
to bridge the gap between visual and linguistic understanding, paving the way for more adaptable
and intelligent navigation systems capable of operating in diverse and dynamic environments. In Ta-
ble 2 [2, 167, 185–188, 192–199, 206–210], we have listed the success rates and success weighted by path
length (SPL) of mainstream object-goal and vision-language navigation methods for comparison. From
the results, we observe that methods incorporating semantic priors, exploration strategies, or human
demonstrations generally achieve better performance, highlighting the significance of leveraging high-
level scene understanding and data efficiency in embodied navigation tasks.
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4 Efficiency optimization for embodied navigation

Efficiency is important in the design and operation of embodied navigation systems. These systems must
navigate through complex environments while responding to changes in real time. To achieve this, several
key factors must be optimized, including latency, energy efficiency, and robustness. Each of these factors
plays a vital role in ensuring that the system can perform its tasks safely and effectively. This section
will discuss challenges and strategies for optimizing these aspects.

4.1 Latency optimization

To ensure safety, embodied navigation agents often have a strict budget for end-to-end latency. For
drones, autonomous cars, and robots, high latency can result in missed opportunities to avoid obstacles
or take optimal paths, which is crucial for safe and efficient navigation. Besides, Efficient navigation
involves continuous path planning and re-planning. Low latency ensures that the agent can quickly
adjust its path based on new information, optimizing travel time and energy consumption. Therefore,
optimizing end-to-end latency is crucial for embodied navigation tasks.

However, ensuring real-time reaction for embodied navigation agents involves several challenges. First,
embodied navigation agents often involve multiple tasks such as perception, control, and decision-making,
many of which typically rely on computationally intensive algorithms such as DNNs, which can cause
high latency. Achieving high computational efficiency with limited resources is a challenge in embodied
navigation [211]. Second, the environment of an embodied agent is dynamic, with factors like tem-
perature variations, hardware aging, and background processes. This requires edge devices to switch
applications or models to handle new tasks in changing environments [212]. Thus, maintaining stable
computation latency in dynamic environments is another significant challenge [213,214]. Third, network
and communication challenges play a crucial role in ensuring real-time performance. Systems relying
on remote processing or cloud services can face significant network latency, requiring fast and reliable
communication links. There have been multiple techniques proposed to address the challenges.

4.1.1 Adaptive computation

Adaptive computation is to dynamically adjust computational resource allocation based on the real-time
demands of the navigation task as shown in Figure 8. This ensures that the latency budget is met even in
dynamic environments, as highlighted by various studies [213–215]. MCDNN [212] achieves this through
model scheduling, employing an optimizing compiler and runtime scheduler to facilitate the execution
of multiple DNN models across mobile and cloud devices, thereby optimizing resource utilization and
enhancing overall system performance. NestDNN [213] introduces an on-device adaptive deep learning
framework that operates independently of cloud connectivity, accounting for runtime resource variability
to enable resource-aware DNN models tailored for mobile vision systems. LegoDNN [215] introduces
a novel block-grained DNN model scaling scheme. This scheme is tailored for running multiple DNN
workloads on mobile devices, offering a modular approach that allows for efficient scaling and management
of DNN models. AdaptiveNet [214] proposes an innovative model elastification method designed to
adapt DNN architectures post-deployment. Compared to former studies, AdaptiveNet could adapt DNN
architecture after deployment, where the model quality could be precisely measured. These studies
provide robust solutions for ensuring latency budget in dynamic and resource-constrained environments.

4.1.2 Parallel processing

Leveraging multiple processors and specialized hardware accelerators to distribute computational tasks
can also enable faster processing and response times [216,217]. With various processing units like CPUs,
GPUs, and NPUs, mobile devices such as robots and intelligent vehicles can decrease inference latency
through parallel execution on different processors [218]. Efficient parallel methods have been explored to
optimize computation distribution [219], balance the load [220], and minimize communication costs across
processors [221]. BioDrone [8] ensures real-time reaction by leveraging parallel computation through
FPGA-based implementations of the chiasm-inspired event filtering (CEF) and lateral geniculate nucleus
(LGN)-inspired event matching (LEM) algorithms. These algorithms process event data in parallel,
significantly reducing latency. DNNFusion [222] introduces advanced operator fusion techniques and
efficient code generation, which reduces memory pressure and improves execution efficiency, leading to



Liu Y H, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 141101:23

Figure 8 Adaptive computing.

high parallelism and low latency of DNN models. NN-Stretch [219] enhances computation parallelism in
deep learning models by converting them into multibranch structures. It achieves this by transforming
traditional single-branch models into shorter and wider models with multiple branches, optimizing them
for execution on heterogeneous multi-processors.

4.1.3 Communication optimization

For embodied navigation systems that rely on remote services or communication with other agents,
efficient communication is vital to maintaining low latency. First, edge computing can alleviate latency
issues associated with cloud dependence. By processing data closer to the source, edge computing reduces
the time required for data to travel back and forth between the device and the cloud. EdgeSLAM
[33] uses a novel computation offloading strategy and an adaptive task scheduling algorithm to achieve
real-time SLAM-based navigation. The system also considers dynamic network conditions and adjusts
system parameters accordingly. SwarmMap [6] presents a framework that scales up collaborative SLAM-
based agents in edge offloading settings. It can achieve real-time collaboration between numerous agents
by implementing a map information tracker, an SLAM-specific task scheduler, and a map backbone
profiling module. Second, optimizing data transmission volume is also critical. Techniques like data
compression [223] and selective data transmission [224] can significantly decrease the amount of data that
needs to be sent over the network, thereby reducing latency. CoEdge [225] introduces a collaborative edge
system tailored for distributed real-time deep learning tasks, enhancing data transmission efficiency by
batching sensor inputs and aggregating inference results. VILAM [226] optimizes data transmission by
extracting and transmitting a compact representation of the static environment, extracting low-frequency
measurements, and utilizing parallel processing techniques. This reduces data volume and ensures efficient
real-time communication and localization.

4.2 Energy efficiency optimization

The compelling need for better power and energy sources is one of the most major challenges to the
advancement of autonomous systems. Particularly for drones and mobile robots, their battery storage
capacity is limited due to size constraints. Additionally, the navigation tasks often need to be performed
in harsh environments, which increases operational complexity. Long-duration missions place higher
demands on energy efficiency, which is particularly crucial for extended operations. Therefore, improving
the energy efficiency of path planning is crucial for the performance of embodied navigation tasks.
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However, improving energy efficiency in path planning for robots involves several significant challenges.
We summarize three main challenges.

• Complex environments and obstacles. Path planning algorithms must constantly adapt to changes,
which can be computationally intensive and energy-consuming.

• Algorithmic efficiency. Many traditional path planning algorithms, like those based on grid maps or
sampling-based methods, may not be inherently energy-efficient. They often focus on finding the shortest
or safest path without considering the energy cost explicitly.

• Real-time processing. Achieving real-time processing while optimizing for energy efficiency is diffi-
cult, especially for autonomous mobile robots operating in dynamic environments. This requires advanced
computing techniques and often specialized hardware to ensure that energy-efficient paths can be com-
puted and adjusted on the fly.

Addressing these challenges involves a multidisciplinary approach, integrating advancements in algo-
rithm design, robotics hardware, and energy management systems. Many studies have proposed cor-
responding solutions to improve energy efficiency in path planning for embodied navigation. These
include Bayesian algorithms, genetic algorithms, and RL algorithms for single-agent systems, as well as
multi-stage heuristic algorithms for multi-agent path coverage problems. Specifically, the path planning
problem of individual intelligent agents has rich applications in scenarios such as autonomous electric
vehicles, UAVs, and mobile robots. Ref. [227] integrated a hybrid evolutionary algorithm and Q-learning,
taking into account both drone speed and distance to obstacles. To overcome the limitations of tradi-
tional optimization methods, this approach combines genetic algorithms with Q-learning. By considering
drone speed and distance to obstacles, the method optimizes path planning decisions based on real-time
information. Ref. [228] proposed a multi-agent path planning scheme based on deep RL. The objective
is to minimize the total energy consumption of drones while completing unloading tasks. Building on
segmented aerial images of the environment as introduced in [229], it demonstrates the establishment of a
rough energy map from segmentation. In the offline phase, this map is utilized to construct a covariance
function for environmental representation based on Gaussian processes (GP). In the online phase, energy
measurements collected during navigation are employed to estimate the energy distribution of the entire
environment using GP regression, thereby reducing energy consumption during drone navigation. Addi-
tionally, the collaborative task processing of multiple intelligent agents is also a very common scenario,
such as drone network communication. The energy optimization work in this area is also very important.
The most important path planning problem for drone swarms is to consider the use of multiple drones to
cover any area containing obstacles, known as the coverage path planning (CPP) problem. The objective
of the CPP problem is to find paths for each drone to cover the entire area. Ref. [230] employed Bayesian
methods to model the energy consumption of road segments for efficient navigation. An online learn-
ing framework was developed to learn model parameters, investigating various exploration strategies.
This framework was then extended to multi-agent environments, allowing multiple vehicles to dynami-
cally adjust navigation strategies and learn energy model parameters based on environmental changes.
Real-world experiments on the Luxembourg SUMO traffic dataset demonstrate the energy optimization
performance of the approach. Ref. [231] tackled the CPP problem in two steps: first, distributing the
given area’s workload evenly among individual drones, and second, solving the minimum energy path
planning (MEPP) problem for each drone. It introduces a well-known Lin-Kernighan heuristic method
to effectively address the issue.

4.3 Robustness improvement

Robustness in embodied navigation specifically refers to the ability of an embodied AI agent (such as a
robot) to consistently and effectively navigate through its environment despite facing a range of challenges.
These challenges can include changes in the task environment, and even sensor noise. Robust embodied
navigation ensures that the agent can adapt to these variations and maintain its navigation performance,
achieving its goals without failure or significant performance degradation. Therefore, robustness is a
crucial characteristic of an embodied navigation system, requiring computationally efficient and intensive
strategies to ensure generalization. Next, we will introduce methods for improving robustness from two
perspectives: adaptation to environmental changes and enhancement of sensor reliability.
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4.3.1 Adaptation to environmental changes

An environment change refers to the fact that deployment environments possess different appearance
statistics (such as weather changes) and motion dynamics (such as varying ground friction coefficients)
compared to the environments used for training those agents [232]. Chattopadhyay et al. [232] proposed
a framework, RobustNav, as a first step to assess the robustness of embodied agents against various
visual and dynamics corruptions. Their findings reveal that standard agents often underperform under
such corruptions, highlighting the need for robustness techniques such as data augmentation and self-
supervised adaptation [233]. RobustNav serves as a testbed for enhancing navigation performance in
diverse perceptual and actuation conditions, and emphasizes that zero-shot adaptation approaches can
be more efficient and scalable than adapting to every possible target scenario due to the enormous variety
of unseen environments and situations.

Peng et al. [234] proposed RDMAE-Nav, a navigation framework for enhancing the robustness of
embodied agents during PointGoal navigation in the presence of visual corruptions. RDMAE-Nav in-
tegrates a visual module employing regularized denoising masked autoencoders (RDMAE) for robust
representation learning, along with a policy module. It achieves competitive performance compared to
state-of-the-art methods, showcasing significant enhancements under diverse visual corruptions.

Recently, a novel adaptation scheme, test-time adaptation, has been applied to embodied navigation.
Unlike model adaptation during the training phase, test-time adaptation updates models to unlabeled
data online during the testing phase [235,236], enabling better knowledge acquisition and accuracy gains
in unknown deployment environments. Gao et al. [237] proposed fast-slow test-time adaptation (FSTTA)
for VLN tasks, balancing adaptability and stability by alternately performing fast updates for immedi-
ate adaptability and slow updates to mitigate cumulative errors during testing. Extensive experiments
demonstrate that FSTTA significantly improves performance on four popular evaluation benchmarks,
validating its effectiveness.

4.3.2 Enhancing sensor reliability

Sensor noise refers to the random variations and inaccuracies in the data collected by the sensors of
embodied agents. These variations can arise from hardware limitations, environmental interference, and
malicious attacks, significantly impacting the agent’s perception of its environment, and leading to errors
in navigation and decision-making.

Liu et al. [238] pioneered the study of vision adversarial attacks for embodied agents by generating
spatiotemporal perturbations to create examples with 3D adversarial noises. They develop a trajectory
attention module to examine scene view contributions, aiding in the localization of 3D objects that
elicit the strongest stimuli for agents’ predictions. By leveraging temporal clues and targeting spatial
dimensions, they perturb the physical properties (e.g., 3D shape and texture) of key contextual objects
in the most critical scene views. The results show that these 3D adversarial examples effectively attack
state-of-the-art embodied agent models and significantly outperform other 3D adversarial attack methods.

Ying et al. [239] validated the malicious adversarial noises of embodied agents in vision navigation
as well. They introduce δ-Markov decision process (δ-MDP) to model the persistent effect of universal
adversarial perturbations (UAP) and propose two novel consistent attack methods, reward UAP and
trajectory UAP. Extensive experiments reveal the significant reduction in the performance of existing
embodied vision navigation methods under their proposed malicious adversarial attacks. Additionally,
Tian et al. [240] investigated multisensory perception under adversarial attacks. They target audio-visual
event recognition tasks as a proxy for audio-visual embodied navigation tasks to validate multimodal
adversarial attacks. Concurrently, an audio-visual defense strategy is proposed based on an audio-visual
dissimilarity constraint and external feature memory banks. Their experiments demonstrate that audio-
visual models are vulnerable to multimodal adversarial attacks, and their defense method enhances the
robustness of audio-visual models without significantly compromising clean model performance.

5 Embodied navigation enabled tasks

This section focuses on the tasks enabled by embodied navigation as in Figure 9, highlighting its in-
dispensable role in the functionality and enhancement of advanced robotic systems. By demonstrating
its transformative impact across various domains, we illustrate how embodied navigation is a critical
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Figure 9 Tasks enabled by embodied navigation.

component that not only expands operational capabilities but also enables new possibilities in robotics
and AI.

5.1 Autonomous driving

Embodied navigation’s nature allows it to directly benefit autonomous driving platforms like cars and
drones, enabling vehicles to perceive and respond to dynamic environments in real time [241–246]. Tra-
ditional systems often rely on predefined routes and static maps with limited adaptability. In contrast,
embodied navigation allows these platforms to navigate safely and efficiently through unpredictable con-
ditions and make instant decisions.

5.2 General assistant robot

General assistant robots rely on embodied navigation to function effectively in various environments,
making them capable of performing tasks that would be impossible with static or limited mobility sys-
tems. These robots integrate navigation with manipulation and interaction capabilities, enabling them
to operate autonomously in complex and unstructured settings.

5.2.1 Navigation with manipulation

Embodied navigation enables robots to navigate through complex environments to reach and manipulate
objects. Without this capability, a robot’s manipulation tasks would be confined to a limited area.
Navigation broadens the scope of manipulation by allowing robots to move to different locations, adapt
to new tasks, and interact with a variety of objects, thereby enhancing their utility in tasks like household
chores and industrial automation.

For instance, TidyBot [9] combines these capabilities to automate household cleanup tasks by lever-
aging LLMs to infer generalized rules from user preferences. TidyBot’s use of predefined manipulation
primitives resulted in successfully placing 85% of objects in correct receptacles during real-world evalua-
tions, demonstrating its efficacy in personalizing and executing household tasks. Similarly, OK-Robot [10]
showcases the potential of VLMs integrated with robotics primitives for pick-and-drop operations in home
environments. Utilizing pre-trained models for object detection and navigation, OK-Robot achieved a
58.5% success rate in zero-shot tasks, highlighting how open-knowledge models can enhance mobile ma-
nipulation without additional training. This approach underscores the versatility of combining navigation
with manipulation to handle unstructured settings effectively.



Liu Y H, et al. Sci China Inf Sci April 2025, Vol. 68, Iss. 4, 141101:27

To further ensure that LLM and VLM-generated policy instructions can be executed by robots in the
current environment, SayCan [247] introduces a novel affordance function. This function combines LLM-
generated instructions with environmental affordances to determine the robot’s next executable action by
scoring the feasibility of actions based on current conditions. This integration significantly enhances the
flexibility and applicability of robotic navigation and manipulation, enabling robots to adapt to varying
scenarios with greater precision. In a different yet complementary vein, Inner Monologue [248] integrates
introspective reasoning into robotic tasks, where the robot maintains an internal dialogue to improve task
planning and execution. This method enhances decision-making processes by allowing the robot to assess
its actions and environmental conditions continually. By incorporating this form of reflective reasoning,
robots achieve higher accuracy in manipulation tasks, particularly in dynamic and unpredictable settings.

Expanding on the flexibility of these integrations, the code-as-policies (CaP) framework [249] uses
LLMs to generate policy code directly for robotic tasks, addressing the limitations of predefined skills.
By interpreting natural language instructions and generating executable code, CaP enables robots to
perform complex navigation and manipulation tasks. This method enhances the agent’s capability to
adapt to new tasks and environments with minimal data collection, which is essential for assistant robots.

5.2.2 Navigation with question-answering

The integration of navigation with question-answering systems allows robots to provide contextual and
spatially relevant information. Embodied navigation enriches the dialogue by enabling robots to under-
stand and incorporate spatial context into their responses, move to relevant locations, and perform actions
based on questions asked. This capability is crucial for providing comprehensive assistance in health-
care and educational settings, where understanding and interacting with the environment significantly
enhances the quality of service.

Das et al. [250] introduced the task of embodied question answering (EQA) where an AI agent must
navigate a 3D environment to answer questions about its surroundings based on first-person vision. This
foundational model highlights the integration of language understanding, visual recognition, and active
perception, which are critical for the agent to navigate and gather necessary visual information efficiently.
This research underscored the importance of embodied navigation as it directly affects the agent’s ability
to locate and interpret relevant visual cues to answer questions accurately.

Building on the challenges of navigation and interaction within EQA, Gordon et al. [11] introduced
a more dynamic aspect to the task through their interactive question answering (IQA) model. Their
work addresses the limitation of static environments in the initial EQA model by enabling the agent
to manipulate objects within its environment, such as opening doors or rearranging items, to access
previously unreachable areas or uncover hidden information. This enhancement allows the agent to
perform tasks that require an understanding of both the environment’s layout and the functional aspects of
objects within it, significantly expanding the scope of questions the agent can answer. Further expanding
the complexity of the navigational tasks, Yu et al. [251] introduced the multi-target embodied question
answering (MT-EQA) model, which allows an agent to address questions involving multiple targets within
the same environment. This development came in response to the limitations of single-target queries in
earlier models. By enabling comparative reasoning across different spatial locations, the MT-EQA model
allows the agent to perform more complex navigational tasks and answer a broader range of questions.
This model not only tests the agent’s navigational abilities but also its capacity to synthesize information
from multiple locations and objects to formulate accurate responses.

PaLM-E [252] represents a significant advancement in the integration of LLMs with embodied naviga-
tion and question-answering, showcasing how multimodal inputs, including visual data and continuous
sensor readings, can be seamlessly integrated into language models to enhance robotic decision-making
and navigation capabilities.

5.3 Navigation for bionic

For bionic robots that mimic biological organisms, embodied navigation is a key component. These
robots aim to replicate the mobility and perception of living beings, which is crucial for navigating
complex terrains.

Embodied navigation, inspired by biological principles, enables bionic robots to move and interact like
their natural counterparts, making them suitable for search and rescue, environmental monitoring, and
exploration in diverse and challenging conditions.
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5.3.1 Bionic fish

Embodied navigation endows bionic fish with enhanced underwater maneuverability and adaptability,
essential for exploring and interacting with deep-sea environments. Research on bionic fish [253, 254],
inspired by deep-sea creatures such as the snailfish, demonstrates how embodied navigation is crucial for
underwater maneuverability. It developed a soft robotic fish capable of operating at extreme ocean depths,
utilizing a distributed electronics system inspired by the snailfish’s skull structure to enhance pressure
resilience. This innovation addresses the challenges of deep-sea navigation and sampling without the
need for bulky protective vessels. The future integration of advanced embodied navigation techniques
could lead to even more autonomous, resilient, and efficient underwater exploration robots, capable of
performing complex tasks such as deep-sea mining and environmental monitoring with minimal human
intervention.

5.3.2 Bionic insects

Embodied navigation in bionic insects reduces reliance on complex external sensors, enabling stream-
lined design and efficient performance with minimal processing power. One study developed a wireless-
controlled robotic insect [255], the BHMbot, which achieves ultrafast untethered running speeds. By
mimicking the leg gaits of insects, this 2-cm-long microrobot can navigate complex trajectories and ob-
stacles, demonstrating high mobility and efficient locomotion in confined spaces. This capability is crucial
for applications such as remote inspection and environmental monitoring. Another study explored the
sensory and locomotion mechanisms of insects to enhance robotic efficiency [256]. Inspired by the way
flies use airflow pressure on their antennae for navigation, this research integrated low-resolution sensors
into microbots to improve performance without adding significant power demands. This method enables
the microbots to navigate and adapt to their environment more effectively. Future work could focus on
enhancing the autonomy and robustness of these insect-scale robots, making them capable of performing
intricate tasks such as infrastructure inspection, environmental monitoring, and precision agriculture.

5.3.3 Multi-environment robots

Embodied navigation enhances the versatility and operational efficiency of robots designed to navigate di-
verse terrains. A study on a quadruped robot [257] utilized dynamic control policies and state estimation
to improve stability and adaptability in varied terrestrial environments. This approach leverages real-time
feedback and embodied navigation to maintain stability across different terrains, highlighting the robot’s
ability to adapt to changing conditions. Conversely, a bio-inspired turtle robot [258] demonstrated the
ability to navigate both land and water using adaptive morphology, allowing smooth transitions between
swimming and walking. This design, inspired by turtle locomotion, showcases the potential of embodied
navigation to enhance versatility and efficiency in multi-environment operations. Future developments
could see amphibious robots equipped with more advanced sensory and adaptive systems, further en-
hancing their ability to tackle diverse terrains and perform a wide range of tasks from environmental
monitoring to disaster response.

5.3.4 Shape-morphing robots

Embodied navigation allows shape-morphing robots to adapt their morphology to targeted routes, high-
lighting their potential in dynamic environments. Shape-morphing robots, inspired by creatures like
octopuses and worms, showcase the advantages of embodied navigation in adapting to various tasks and
environments. Researchers have developed shape-programmable soft robots [259, 260] that can change
morphology to perform tasks such as grasping and locomotion, highlighting the role of embodied navi-
gation in enabling the robot to interact dynamically with its surroundings. Tang introduces a worm-like
soft robot designed for navigating sub-centimeter diameter pipelines [261], inspired by peristaltic motion.
The robot uses dielectric elastomer actuators (DEAs) for propulsion and anchoring, allowing it to tra-
verse various pipeline geometries including L-shaped, S-shaped, and spiral pipes. It demonstrates rapid
motion and adaptability, critical for tasks like pipeline inspection. Future advancements could enhance
the adaptability and multi-functionality of shape-morphing robots, making them invaluable in search and
rescue operations, where these robots could navigate through debris and confined spaces to locate and
assist survivors.
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5.4 Navigation in micro-environment

This subsection explores the application of embodied navigation in micro-environments, focusing on
miniaturized robots used for intricate tasks that require maneuvering through confined spaces, adapting
to minute changes, and operating with high precision [262].

5.4.1 Medical treatment

Navigation-empowered micro-robots can be revolutionary to medical procedures by allowing for mini-
mally invasive surgeries and targeted drug delivery and improving environmental monitoring by enabling
detailed analysis in hard-to-reach areas [12]. Schmidt et al. [13] explored targeted drug delivery systems
using microrobots, specifically designed for cancer treatment. It details how microrobots can be guided
to tumor sites using external magnetic fields, providing a focused therapeutic approach that minimizes
damage to surrounding healthy tissues. Dekanovsky et al. [14] discussed the use of microrobots in the
targeted transport of hormones within the body. These microrobots are designed to navigate through
complex vascular systems, guided by external magnetic fields and real-time imaging techniques. Future
research could focus on integrating navigation with real-time tracking, adaptive systems, and advanced
propulsion mechanisms. By addressing these areas, embodied navigation can unlock new potentials for
microrobots in medical treatments, improving patient outcomes through minimally invasive, highly tar-
geted therapeutic interventions.

5.4.2 Water pollutant disposal

Embodied navigation can be pivotal in enhancing the effectiveness of various micro- and nanorobot sys-
tems in the context of water pollutant disposal. One study introduced temperature-responsive magnetic
nanorobots, which use magnetic propulsion and thermosensitive aggregation to efficiently remove ar-
senic and atrazine from water, demonstrating high recovery and reusability rates [263]. Another study
developed light-driven nano/micromotors that utilize UV light for propulsion, significantly improving
the capture and degradation of nanoplastics without requiring chemical fuels, thus providing an eco-
friendly solution [264]. If further incorporated into these systems, embodied navigation could hopefully
leverage the field of water purification by providing more precise control and enhanced adaptability in
micro-environments [265].

6 Challenges and future work

As an emerging field of study, embodied navigation presents numerous unresolved issues and correspond-
ing challenges in the current research. In this section, we highlight potential future directions for ad-
vancement, outlining key areas where further exploration and innovation may address existing limitations
and enhance the field, as illustrated in Figure 10.

6.1 Embodied navigation in reality

Although a lot of studies and benchmarks in embodied navigation have been proposed in simulation
environments [266], there remains a lack of more in-depth and broader exploration in large-scale real-
world settings, causing a reality-performance gap under distribution shift [267]. This can be attributed
to two main reasons: the relative scarcity of real-world data and the absence of comprehensive real-world
evaluation benchmarks. (i) Challenges in data. Due to the high cost of data collection and manual labor
in real-world environments, researchers often use simulated data for their model training and validation,
which results in performance degradation in reality. To reduce this reality-performance gap, Sim2Real
can be an effective approach for transferring knowledge learned in simulation to reality when real-world
data is limited [268, 269] or totally inaccessible [270–274] during training. (ii) Challenges in evaluation
benchmarks. Besides data, a real-world evaluation benchmark is also necessary and relatively lacking
for sufficient model validation in real environments. Building on the success of simulated evaluation
benchmarks [275, 276], creating real-world benchmarks for embodied AI tasks is meaningful but also
requires substantial human efforts and financial resources. Researchers have already made a few efforts
in this area [277–280]. Nevertheless, there is still a considerable distance to completely eliminate the
performance gap between simulation and reality. This gap persists not only due to the more complex and
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Figure 10 Challenges and future work of embodied navigation.

dynamic factors in the real environments but also because of the heterogeneous nature of real embodied
agents, which have varying postures and behavior patterns, such as quadruped robots [281], modular
robots [282, 283], and even biomimetic underwater robots [253]. Considering the behavior patterns of
real embodied agents and dynamic task environments, constructing fair, scalable and effective real-world
evaluation benchmarks will be a crucial long-term goal for future work.

6.2 Multi-agent collaboration

Multiple embodied agents can achieve swarm intelligence through collaboration that far surpasses the
level of individual intelligence [284]. However, compared to single-agent systems [285, 286], current em-
bodied navigation research pays relatively less attention to multi-agent systems. One reason is the lack
of multi-agent features in existing evaluation benchmarks. To the best of our knowledge, only a few
benchmarks [287–289] consider multi-agent setups, providing limited validation approaches for multi-
agent algorithms. Moreover, unlike single-agent systems, multi-agent systems in embodied navigation
encounter unique challenges. The agents must learn from their own observations and also account for the
transitions of other agents, therefore requiring additional collaboration design in navigation policy, target
allocation, and collision avoidance [290]. To address the above challenges, existing research develops
collaboration algorithms via deep RL [291–293], GNN-based methods [294–296], or customized modular
training [297–299].

Nevertheless, the challenges of multi-agent collaboration are far from being fully resolved. In more
practical scenarios, multi-agent systems usually face communication constraints (e.g., bandwidth and
range) [300]. Additionally, the collaboration of heterogeneous agents (i.e., agents with different functions
and behavior patterns) has not been sufficiently explored, which is both meaningful and more challenging
as it requires greater consideration of the complementary abilities of agents and a deeper scene under-
standing of the task [301]. Furthermore, compared to simply navigating to specific goals, multi-agent
systems may need to undertake more complex formation tasks (e.g., flocking in a leader-follower con-
figuration) without access to global information (i.e., a map and the states of all agents), where each
agent has to navigate to an appropriate goal with minimal transitions, only knowing the states of nearby
agents [302, 303]. In such cases, drawing inspiration from the collective behaviors of biological swarms
(e.g., birds, fishes, and wolves) can be a promising and interesting research area [304, 305].
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6.3 Bio-inspired neural architectures of embodied navigation

With the development of artificial neural networks and systems [306], embodied navigation has continu-
ously achieved breakthroughs in accuracy and efficiency. However, we are still far from creating embodied
agents that can interact naturally and safely with dynamic environments and each other, akin to bio-
logical organisms or humans. In nature, even small insects can handle different behavior patterns such
as flying, swimming, and crawling, as well as robust navigation policies [307, 308]. Therefore, existing
embodied navigation systems have yet to bridge the gap with biological neural systems.

The challenge lies in how to map biological neural systems to the perception, learning and behavior of
embodied agents. Most existing embodied navigation studies focus on perception (e.g., multi-modal sen-
sor feedbacks [179]) and learning (e.g., LLM-driven embodied policies [286]) and have achieved significant
progress. On the other hand, research in robotic design [253, 309–311] focuses more on the “intelligence
of embodied behaviors”. These studies support the idea that, in many cases of biological organisms,
intelligence can arise from the “embodiment” itself [312], such as the sensor distribution in insects [313]
and the motion dynamics of animals [314]. Despite the above efforts, effective coordination of embodied
agents’ perception, learning, and behavior solutions remains unresolved. Possible approaches include
(i) training individual solution modules and then assembling them into complete embodied policies [152],
(ii) adopting end-to-end automatic training schemes [194], or (iii) further exploring and drawing inspi-
ration from biological coordination mechanisms [315]. In the future exploration of validating these ap-
proaches, more support and breakthroughs in embodied hardware [316] and biological mechanisms [317]
can also be indispensable.

6.4 Security and privacy

With the spread of embodied AI applications, embodied agents are increasingly playing a significant role
in public spaces and human life. However, the complex functionalities of embodied agents (e.g., navi-
gation, manipulation, and question-answering) and computing paradigms (e.g., edge computing) result
in heightened uncertainties and increased susceptibility to diverse attacks on their sensors, computation,
communication, and actuators, posing serious security risks and challenges. There exists a certain amount
of studies exploring security problems for various types of embodied agents, such as social robots [318],
UAVs [319], UGVs [320, 321], and high-level autonomous driving [322]. However, there has been rela-
tively little discussion specifically addressing the security of embodied navigation [323]. To some extent,
enhancing the robustness of embodied navigation (Subsection 4.3) can be seen as a branch of ensuring
security.

Meanwhile, as an embodied agent is capable of collecting more private information from users in
comparison to a disembodied one [324], user privacy problems (e.g., leakage of training data [325] and
personal information [326,327]) become increasingly severe in embodied AI. Recently, federated learning
has been introduced to embodied navigation to provide a privacy-preserving embodied agent learning
framework [328]. Certainly, it can be said that within the realm of embodied navigation, there persists a
notable research gap regarding security and privacy concerns.

7 Concluding remark

In this article, we offer an in-depth review of embodied navigation research. We categorize the literature
into four key areas: perception, navigation strategies, efficiency optimization, and embodied navigation
enabled tasks, and delve into the critical topics within each category. We also highlight the substantial
challenges that remain, including real-world applicability, multi-agent collaboration, bio-inspired neural
architectures, and issues surrounding security and privacy. We aim for this article to serve as a foun-
dational reference, providing researchers and practitioners with a thorough understanding of embodied
navigation and inspiring further advancements in this promising and rapidly evolving field.
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25 Gonçalves T, Comport A I. Real-time direct tracking of color images in the presence of illumination variation. In: Proceedings

of IEEE International Conference on Robotics and Automation, 2011
26 Klose S, Heise P, Knoll A. Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data.

In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013. 1100–1106
27 Scandaroli G G, Meilland M, Richa R. Improving NCC-based direct visual tracking. In: Proceedings of European Conference

on Computer Vision, 2012. 442–455
28 Dame A, Marchand E. Second-order optimization of mutual information for real-time image registration. IEEE Trans Image

Process, 2012, 21: 4190–4203
29 Crivellaro A, Lepetit V. Robust 3D tracking with descriptor fields. In: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2014. 3414–3421
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