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Abstract

Streaming services have billions of mobile subscribers, yet video

piracy has cost service providers billions. Digital Rights Manage-

ment (DRM), however, is still far from satisfactory. Unlike DRM,

which attempts to prohibit the creation of pirated copies, finger-

printing may be used to track out the source of piracy. Nevertheless,

the idea of piracy tracing is not widely used at the moment, since

existing fingerprinting-based streaming systems fail to serve nu-

merous users. In this paper, we present the design and evaluation of

StreamingTag, a scalable piracy tracing system for mobile streaming

services. StreamingTag adopts a segment-level fingerprint embed-

ding scheme to remove the need of re-embedding the fingerprint

into the video for each new viewer. The key innovations of Stream-

ingTag include a scalable and CDN-friendly delivery framework,

a polarized and randomized SVD watermarking scheme suitable

for short segments, and a collusion-resistant fingerprinting scheme

optimized for large-scale streaming services. Experiment results

show the good QoS of StreamingTag in terms of preparation latency,

bandwidth consumption, and video fidelity. Compared with existing

SVD watermarking schemes, the proposed watermarking scheme

improves the watermark extraction accuracy by 2.25x at most and

1.5x on average. Compared with existing collusion-resistant finger-

printing schemes, the proposed scheme catches more colluders and

improves the recall rate by 26%.
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1 Introduction

Streaming services, including live streaming services, are re-

garded as one of the most essential mobile applications. Mobile

users tend to devote a considerable amount of time to these appli-

cations. On average, a YouTube user spends 23.7 hours per month,

and a TikTok user also spends 19.6 hours per month [16]. Copyright

is crucial for content providers in such a large market. Hundreds of

thousands of jobs and tens of billions of dollars in GDP are reported

to be lost every year in the United States due to video piracy [8].

Numerous anti-piracy strategies have been extensively studied

in academia and industry in order to protect the copyright of stream-

ing videos. Among these techniques, the most widely used one is

Digital Rights Management (DRM) [34]. The video streaming ser-

vices provided by major providers such as Netflix, Hulu, Amazon,

Apple, are all protected by a variety of DRM technologies including

Widevine [11], FairPlay [2], and PlayReady [25]. Regrettably, DRM

is not a panacea. To achieve a high level of security, specialized

hardware like Trusted Execution Environment (TEE) [42], Trusted

Platform Module (TPM) [18], or High-Bandwidth Digital Content

Protection (HDCP) [6] is required on mobile terminals; otherwise,

software-only DRM might be compromised [19]. Even with top-

level DRM, there are still instances where these technologies cannot

prevent content leakage on their own, such as screen recording with
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Figure 1: The overview of StreamingTag.

a camcorder. Although recent efforts [44, 45] have been made to pre-

vent recording by exploiting differences between the human visual

system and cameras, they either require complex video processing

on the client side [44] or attempt to alter the physical environment

(e.g., installing an LED flickering at a high frequency [45]), thereby

reducing their applicability to mobile streaming. Additionally, they

are susceptible to software-based screen recording.

One of the next-best ideas might be to track down and take legal

action against the pirate. Assume we are able to embed unique infor-

mation (ormore precisely, a fingerprint) into the content provided to

different users. Once an illegal copy is distributed, the distributor’s

fingerprint (i.e., the pirate) can be extracted and tracked. Although

this concept appears to be quite intuitive and effective, it is not

as widely used as DRM at the moment. To make the large-scale

deployment of such a framework feasible, no modifications should

be made to mobile terminals. We identify the primary impediment

to successfully implementing fingerprint-based piracy tracking is

that embedding fingerprints on the server side is not scalable

and thus not suitable for large-scale streaming services. If we

use existing fingerprinting-based piracy tracing systems [13, 41] to

serve a video to 𝑁 users, 𝑁 copies of the video will be generated

with 𝑁 unique fingerprints. Such frameworks are ineffective for a

service provider with millions of users due to their high computa-

tion and storage overhead. In fact, these techniques mainly focus

on embedding a relatively large amount of data, e.g., the fingerprint,
into every selected frame of the video. When it comes to video

streaming, however, this type of cumbersome embedding schema is

superfluous. Instead, by using a more lightweight and low-density

embedding schema, even though only a small amount of data can

be embedded in a single frame, sufficient information to identify

the pirate can still be extracted using all of the frames.

Based on this observation, considering a series of frames, we

only encode a single bit in each frame and prepare two versions of

each frame representing bit ‘0’ and bit ‘1’. Then we can distribute

different series of frames to different users with their identities (e.g.,
user ids) embedded. Unfortunately, applying this naïve approach

has a number of challenges. (1) A framework compatible with

nowadays’ mobile streaming infrastructures is required. To-

day’s large-scale streaming services rely on caching-based Content

Delivery Networks (CDNs) to ensure a consistent level of quality of

service (QoS) [15, 23]. However, existing watermarking techniques

are mostly designed to compute offline, i.e., pre-processing the en-

tire image or video, and so are not suitable for real-time streaming

services. (2) A more lightweight, more robust, yet still im-

perceptible embedding technique is needed. Today’s singular

value decomposition (SVD) watermarking algorithms are the most

robust of all original video-based watermarking algorithms, yet

they rely on heavy SVD operations. To serve numerous requests,

the computation complexity should be reduced to as little as possi-

ble. Besides, conventional watermarking algorithms intended for

embedding a relatively large amount of data and defending against

single attacks are insufficiently resilient against popular streaming

pipelines. We must further improve their robustness without sig-

nificantly changing the visual appearance of video frames. (3) The

collusion attack must be considered. Attackers might collabo-

rate to carry out an effective collusion attack, in which they mix
multiple copies and compromise the integrity of the embedded fin-

gerprint, making tracking them difficult or impossible. As a result,

we must develop a fingerprinting strategy capable of withstanding

collusion attacks and identifying potential attackers.

In this paper, we present StreamingTag, a novel piracy tracking

solution intended for streaming services. As shown in Fig. 1, Stream-

ingTag can trace back the source of piracy by delivering different

copies to different users. To address the first challenge, the video

is divided into consecutive sections, and two variants (with bit 0

and bit 1 embedded, respectively) are generated from each section,

using the digital watermarking technique. For each user requesting

the video, a fingerprint is generated at run-time, and StreamingTag

instructs users to fetch the corresponding variant of each section

in accordance with their fingerprints (e.g., the user fetches the first
variant of the fifth video section if the fifth bit of the user’s finger-

print is 0; otherwise the second variant is fetched). In this manner,

no modification to the mobile terminals is required, and the variants

of all video sections can still be cached by CDNs to guarantee the

QoS. With regards to the second challenge, we propose a novel

watermarking technique that distinguishes the two variations dra-

matically by polarizing their singular values in opposite directions

and embedding the same bit into numerous randomly-localized

blocks. For the third challenge, we use a collusion-resistant fin-

gerprint code whose security has been theoretically demonstrated.

The main contributions are as follows:

• We propose a new video delivery pipeline to deliver differently

fingerprinted copies to different users, which is scalable, CDN-

friendly, and compatible with the existing video delivery infras-

tructure.

• We propose a bipolar and randomized watermarking scheme

based on SVD that fits well with the proposed delivery pipeline.

By leveraging StreamingTag’s low-density requirement for wa-

termark capacity, this approach improves extraction accuracy

by up to 2.25x compared to SOTA SVD-based watermarking,

without incurring any additional costs.

• To defend against collusion attacks, we employ a randomized

fingerprinting strategy and carefully select the fingerprinting

generation parameters. The experiments demonstrate that our

technique is capable of defending against up to nine colluders

with a success rate of greater than 80%.
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The rest of the paper is organized as follows. In Sec. 2, we briefly

review the preliminary knowledge about video streaming, water-

marking, and fingerprinting. In Sec. 3, we present two threat mod-

els, highlight design challenges, and then overview the design of

StreamingTag. The improved watermarking scheme and finger-

printing scheme are discussed in Sec. 4 and 5, respectively. We

evaluate the performance of StreamingTag in Sec. 6. A discussion

on limitations and possible extensions is conducted in Sec. 7. We

review the related work in Sec. 8 and conclude the paper in Sec. 9.

The main symbols are summarized in Appendix A.3.

2 Background

2.1 Streaming and Live Streaming

HTTP-based streaming protocols, including theHTTP Live Stream-

ing (HLS) protocol [26] and theMPEGDynamic Adaptive Streaming

over HTTP (MPEG-DASH) protocol [32], have been the de facto

standard for video streaming services. When serving a video stream

using these protocols, the server side needs to split the original

video stream into sequential segments. The client first downloads a

manifest file containing the URLs of each segment in the requested

video stream and then requests each segment.

Typical video data is of larger size when compared to other

kinds of data transferred via HTTP, bringing difficulties to large-

scale video streaming. To ease this burden, video data is usually

served from CDNs [15]. CDNs can be viewed as a hierarchy of

caches [5]. In a CDN-enabled video streaming system, a client’s

request for a segment listed in the manifest is routed to a closely

located CDN edge server instead of the origin server. The edge

server directly responds to the client if the requested content hits

its cache. Otherwise, it tries to fetch the content from a CDN server

higher in the hierarchy and ultimately to the origin server, then

sends the response and caches the content for future requests [9].

The caching capabilities of CDNs greatly boost content delivery in

terms of scalability and latency. Therefore, we should sufficiently

utilize such caching capabilities while designing StreamingTag.

2.2 Watermarking and Fingerprinting

Hidden watermarking (a.k.a. digital watermarking) is a relatively

new technology that allows for the discrete integration of water-

mark data into multimedia carriers such as photos [30], music [4],

and video [35]. The embedded data can later be identified to trace

copyright infringement and ensure the integrity of data.

Unlike digital watermarking, which often embeds the owners’

copyright information into the objects, digital fingerprinting en-

sures that the encoded content is unique for each user. When a

manufacturer finds infringement, it can employ fingerprint data to

hunt out the source of the unlawful copy and prosecute the pirate,

thereby protecting and preventing copyright infringement.

When we use the word watermarking in this paper, we mean the

process of embedding invisible data into a video. While the term

fingerprinting refers to the process of encoding a user’s identity.

2.3 SVD-Based Video Watermarking

SVDwatermarking, a class of original video-based watermarking

techniques, modulates the watermark information into the indi-

vidual values of video frames. Since the singular values reflect the

intrinsic rather than the visual characteristics of frames, embed-

ding the watermark into the singular values can achieve both high

imperceptibility and robustness [43]. SVD-based watermarking typ-

ically consists of two stages, i.e., embedding and extraction. The

embedding stage consists of the following steps:

• Step 1: The input video is decoded to a stream of uncompressed

frames. Some frames are selected as embedding regions for wa-

termark embedding. For convenience, we refer to these frames

as “host frames" in this paper.

• Step 2: Typically, every selected embedding region 𝑟 is converted

to the frequency domain through some transform such as dis-

crete cosine transform (DCT) [24], discrete wavelet transform

(DWT) [27], the combination of DCT and DWT [20], etc. Then
the SVD operation is performed on the sub-band at a certain

frequency (denoted as ℱ(𝑟 )), i.e., ℱ(𝑟 ) = 𝑈𝑆𝑉𝑇
, where 𝑆 is a

diagonal matrix consisting of singular values. Typically, the sub-

band at middle or high frequency is used in this step to preserve

imperceptibility.

• Step 3: A matrix 𝑆𝑤𝑚 is generated from the watermark image

through SVD. Then, 𝑆𝑤𝑚 is modulated into 𝑆 through some

matrix operation such as matrix addition (i.e., 𝑆 ′𝑤𝑚 = 𝑆 + 𝛼𝑆𝑤𝑚 ,

where 𝛼 denotes the watermarking strength).

• Step 4: The frequency sub-band of the watermarked region,

ℱ(𝑟 ′𝑤𝑚), is obtained by ℱ(𝑟 ′𝑤𝑚) = 𝑈 𝑆 ′𝑤𝑚𝑉
𝑇
.

• Step 5: The watermarked region 𝑟 ′𝑤𝑚 is obtained by transform-

ing ℱ(𝑟 ′𝑤𝑚) back from the frequency domain to spatial domain

through the corresponding inverse operations, such as inverse

DCT, inverse DWT, etc.

In the extraction stage, 𝑆 ′𝑤𝑚 is extracted by performing the above

Step 1-2 again on the watermarked video. To obtain the embedded

𝑆𝑤𝑚 (which equals to
𝑆′𝑤𝑚−𝑆

𝛼 ), 𝑆 should also be extracted from

the original (i.e., unwatermarked) 𝑟 . To avoid the cost of saving 𝑟 ,

𝑆 is estimated by extracting 𝑆𝑎𝑑 𝑗 from the reference region 𝑟𝑎𝑑 𝑗 ,

which is located at the same position within an adjacent frame and

resembles 𝑟 due to temporal redundancy.

To further improve robustness, one common method is to select

multiple host frames and repeatedly embed the same watermark

into them. The host frames can be randomly selected, e.g., using
a random sequence to determine their indices [27]. Denote the

probability that an embedded watermark is correctly extracted

from a single embedding region as 𝑞. For simplicity, we suppose

that the extraction correctness from 𝑛𝑒 embedding regions (with

the same watermark embedded) follows a binomial distribution

𝐵𝑖𝑛𝑜𝑚(𝑛𝑒 , 𝑞). Consequently, the overall extraction accuracy is in-

creased to

∑𝑛𝑒
𝑘= ⌈(𝑛𝑒+1)/2⌉

(𝑛𝑒
𝑘

)
𝑞𝑘 (1 − 𝑞)𝑛𝑒−𝑘 using a majority vote.

In this paper, we use redundancy-enhanced SVD watermarking

as our baseline method. In the Step 2 of the baseline’s embedding

stage, the 3-level DWT transformation is used, and the 𝐻𝐿3 sub-

band (i.e.,𝑊𝑉
𝜓
(𝐽 − 3) in [10]) is selected asℱ(𝑟 ). The input is video

segments, thus the baselinemethodwill be called𝑚 times if wewant

to watermark the entire video consisting of𝑚 segments. To improve

the fidelity, only the luminance component of an embedding region

is used in the baseline and the proposed method.
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Figure 2: The workflow of StreamingTag.

3 System Design

3.1 Threat Models

This paper focuses on two types of pirate attacks: the Naïve
Redistribution and the Colluding Redistribution Attack.

Naïve Redistribution (NR) Attack. The attacker simply redis-

tributes the received copy without collaborating with other attack-

ers in this type of attack. To break down any fingerprint embedded

in the copy, the attacker can modify the decoded copy prior to

re-encoding and redistribution through some common signal pro-

cessing operations (including scaling, Gaussian noising, andmedian

filter). However, such a modification is visually insignificant in or-

der to preserve the pirated copy’s visual quality.

Colluding Redistribution (CR) Attack. Several attackers may

collaborate by mixing different copies. Formally, the set of colluders

is denoted as𝐶 (with 𝑐 = |𝐶 |), and for each colluder 𝑗 ∈ {1 . . . 𝑐}, the
delivered version of segment 𝑖 is denoted as 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖, 𝑗 . In this paper,

we assume that the colluders will randomly select a segment file

from {𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖,1, . . . , 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖,𝑐 }, and the probability of selecting

any segment file is
1

𝑐 . Colluders may prefer this collusion strategy

for two reasons: (1) Risk is fairly shared, so the maximum degree of

suspicion among all colluders is lowered; (2) Since such a strategy

allows colluders to cooperate directly without exchanging received

copies with untrusted accomplices, a larger piracy group could be

formed by public ‘recruitment’. After the selection, the attackers

further make minor visual changes to the selected segment file,

similar to the NR attack. Apparently, the NR attack is a special and

the easiest case of the CR attack.

3.2 Design Challenges

We begin by discussing the NR attack’s design challenges. To

defend against the NR attack, the system should embed the user fin-

gerprint into the content delivered to any user. However, achieving

such a straightforward objective presents two difficulties. (1) CDNs

capitalize on the fact that multiple users within a physical region

make the same digital content request. By caching the same content

for multiple users, the CDN edge servers can deliver the content

directly to the user without frequently fetching data from the re-

motely located origin server. However, fingerprinting-based piracy

tracing conflicts with cache-based CDN by nature. As no modifi-

cation should be applied to mobile terminals for full compatibility,

we should generate all fingerprinted copies on the server side and

then directly send each unique copy to the corresponding user. As a

result, the benefits of using CDNs may be completely negated, and

the overall quality of service may suffer significantly. Meanwhile,

when 𝑛 users view the video together, the watermarking algorithm

must run 𝑛 times simultaneously to generate 𝑛 unique copies, im-

posing a significant overhead. (2) While SVD-based watermarking

techniques are shown to be extremely resistant and universal, they

are still insufficient in our scenario. First, to support large-scale

streaming services, the cost of SVD operation, which is the key

to robust watermarking, must be minimized as much as possible.

Second, the watermarking algorithm must provide good impercep-

tibility and strong robustness (i.e., the watermark should still be

recoverable after a chain of attacks consisting of initial encoding at

the server side, signal processing conducted by the attacker, and

re-encoding for efficient re-distribution) at the same time, which

are mutually contradictory by nature.

Even if the above two challenges are overcome, the attacker may

collaborate to launch the Colluding Redistribution Attack. This takes
us to the third issue, which is that the integrity of the embedded

fingerprint can be easily broken by a simple CR attack. Rather

than producing user fingerprints haphazardly, we must employ a

sophisticated fingerprint production and accusation approach.

3.3 System Overview

StreamingTag in a nutshell. The workflow of StreamingTag

is shown in Fig. 2. The preparation stage is the initial stage.
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The input video is decoded and divided into a series of segments

of equal duration. Utilizing the proposed watermarking scheme,

two variants are generated for each segment, with bit 0 and bit 1

embedded respectively. Following this stage, approximately double-

sized video content is generated. The distribution stage is the

second stage. For any user 𝑗 requesting the video, a fingerprint

code of length𝑚 (i.e., 𝑋 𝑗 in Section 5.1) will be generated.As stated

in Section 2.1, content segments are indexed by a manifest file,

and the video player works by fetching segments listed in this

file. Therefore, during this stage, StreamingTag generates a unique

manifest file for the 𝑗-th user based on 𝑋 𝑗 , ensuring that the 𝑖-th

bit, 𝑋
(𝑖)
𝑗

, is embedded into the 𝑖-th segment listed in the manifest

file. Therefore, different users play distinct copies, and the variants

of segments form a bit-stream, i.e., the user’s fingerprint, which
can be used to track a user. The accusation stage is the last stage.

Once the video has been illegally distributed, we must extract the

embedded bits segment by segment to obtain the fingerprint. The

extracted fingerprint is then used to charge the alleged attackers.

The distribution stage is re-executed for every new viewer of

the same video, but the resource-consuming preparation stage only

needs to be performed once for the video and introduces almost

negligible cost. Besides, as the variants generated in the preparation

stage are directly served to different users in the distribution stage,

StreamingTag can support large-scale real-time streaming services

by caching these variants via existing CDNs. To summarize, Stream-

ingTag effectively addresses the first challenge by its lightweight

and CDN-friendly delivery pipeline.

Bipolar and Randomized SVD watermarking (Sec. 4). We use

a novel watermarking scheme in the preparation stage and accusa-

tion stage to tackle the second challenge. Taking advantage of

the loose requirement on watermark capacity, we propose a bipolar

and semi-explicit SVD watermarking scheme, which boosts the

robustness and efficiency simultaneously. The redundancy-based

watermarking enhancement is also slightly modified to adapt to

short segments with limited inter-frame variance.

Fingerprint generation and accusation (Sec. 5). To meet the

third challenge (i.e., the CR attack), we employ a randomized

collusion-resistant fingerprint generation and accusation strategy.

The fingerprint generation and accusation procedure is conducted

independently for each user, preventing attackers from framing

innocent users. Each fingerprint is stored in the database. Once a

pirated copy is identified, its fingerprint is extracted and compared

with stored fingerprints to identify attackers. A theoretical analysis

of the model is conducted to provide safety guarantee.

4 Bipolar and Randomized SVDWatermarking

4.1 Robustness of Watermarking

Watermarking technologies can embed invisible data into an

image to enable piracy tracing, tampering detection, etc. While

existing techniques for watermarking original frames are believed

to be robust, their reliability in our context remains in doubt for

the following reasons: (1) Typically, the robustness of a water-

marking algorithm is assessed against a single attack, whereas a

watermarked segment is subjected to a combination of different

attacks in both the NR and CR attack models. To be more precise,

the attackers are willing to decode the received segment (which

Attack

Video

ID

H.264

MF

(3*3)

H.264+

MF (3*3)

+ H.264

GN

(𝜎 = 5)

H.264+

GN (𝜎 = 5)

+ H.264

1 82.0% 67.8% 57.1% 87.0% 69.0%

2 67.9% 69.2% 58.4% 79.1% 62.6%

3 77.8% 74.5% 56.6% 90.5% 63.5%

Table 1: The watermark extraction accuracy of traditional

SVD-based watermarking algorithms under different attacks.

‘MF’ represents median filter, and ‘GN’ represents Gaussian

noise.

is already compressed), then perform malicious operations to re-

move the embedded watermark, and finally re-encode the modified

segment for efficient redistribution. (2) As stated in Section 2.3,

the baseline method can utilize redundant embedding to further

improve robustness [27, 37]. However, for a rather short video seg-

ment, it’s highly likely that all the host frames within it are visually

similar due to temporal redundancy. As the correctness of extract-

ing the watermark depends on the content of the host frame and the

embedded watermark, extracting the same watermark repeatedly

from the similar host frames within a short segment may always

produce the same result, making the assumption of binomial dis-

tribution (see Section 2.3) unrealistic and the redundancy-based

enhancement useless.

We utilize the baseline SVD-based watermarking introduced in

Section 2.3 to quantify the significance of the aforementioned two

concerns. As the baseline method was initially designed to embed

the singular value matrix of a watermark image rather than a single

bit, we employ two different images (whose singular value matrixes

are 𝑆0𝑤𝑚 and 𝑆1𝑤𝑚) to represent bit 0 and bit 1 in the embedding

stage. The extraction stage is slightly modified to map the extracted

𝑆𝑤𝑚 to bit 0 or 1 as follows: the extracted bit is 0 if the cosine

similarity between the extracted 𝑆𝑤𝑚 and 𝑆0𝑤𝑚 is greater than that

between 𝑆𝑤𝑚 and 𝑆1𝑤𝑚 ; otherwise bit 1 is extracted.

Two preliminary experiments are conducted with the baseline

method. In both experiments a single bit is modulated into every

segment, whose duration is fixed to 1 second. The first experiment

employs five distinct attacks on the video segments which are

watermarked by the baseline method. As shown in Table 1, the

third and fifth attacks are composed of a sequence of attacks, more

closely resembling real-world events. Given that composite attacks

do really significantly reduce robustness, they must be factored

into our architecture. In the second experiment, we change the

number of host frames used to repeatedly embed a single bit (which

reflects the level of redundancy) to find out whether redundant

embedding really improves robustness. The imposed attack is H.264

encoding, the most applied video coding standard nowadays. The

baseline method and an alternative strategy are compared. The

alternative strategy first randomly determines the indices of host

frames, then randomly selects sub-regions (whose size is 512 ×
512) located at different positions of these host frames, and finally

embeds the same bit into these random regions rather than the

entire host frames. In this manner, the contents of these embedding

regions differ, and the interdependence among different votes is
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Figure 3: The watermark extraction accuracy of two embed-

ding region selection strategies.

decreased. For the purpose of fair comparison, the baseline method

also embeds the watermark into sub-regions (whose size is also

512 × 512) of host frames, but all these sub-regions are at the same

spatial position. Fig. 3 illustrates the measurement findings. As the

number of embedding regions increases, the alternative method

presents higher robustness, while the baseline method degenerates

for two reasons. First, as expected, employing similar embedding

zones within a brief video piece does not always increase resilience.

Second, when the number of watermarked blocks increases, spatial

and temporal redundancy reduces, pushing H.264 to increase the

compression level to maintain a stable bit rate.

4.2 Watermarking for Streaming Services

As previously stated, existing watermarking methods are inef-

fective in our circumstance, since the segment is very short and

the attack is essentially a combination of multiple discrete attacks.

Fortunately, our case provides a lenient restriction on watermark

capacity, needing only one bit to be embedded in a segment. Taking

advantage of this, we offer two strategies for improving the robust-

ness and computational cost of existing SVD-based watermarking

systems. Additionally, we use the results of the second experiment

in Section 4.1 to propose a third strategy that is applicable in our

circumstances. The following are the three techniques:

Polarized Singular Value Modulation. The baseline method

modulates 𝑆𝑤𝑚 (which depends on the actual bit to be embedded)

to 𝑆 by matrix addition (i.e., 𝑆 ′𝑤𝑚 = 𝑆 + 𝛼𝑆𝑤𝑚). Instead, we propose

to modulate the single bit 𝛽 via:

𝑆 ′𝑤𝑚 = 𝑆 + (−1)𝛽𝛼𝑆𝑤𝑚, (1)

where 𝑆𝑤𝑚 is a constant matrix. The rationale is that, because

watermarked frames are often subjected to a number of attacks in

our situation, we should aim to increase the distinction between two

different forms of the same frame (with bit 0 and bit 1 embedded,

respectively) and make them more easily distinguishable. Thus, to

embed bit 0 (or bit 1), 𝑆𝑤𝑚 can be added to (or subtracted from) 𝑆 ,

polarizing the two differently watermarked segments in opposite

directions and immediately discernible.

Semi-Explicit SVD-based Watermarking Scheme. The em-

bedding process should be as simple as possible to allow for real-

time watermarking of numerous live video streams. However, the

Algorithm 1 Watermark Embedding

Input:

𝐹 = (𝑓1, 𝑓2, ...): frames of a segment

𝑛𝑒 : the number of embedding regions

𝑠𝑖𝑧𝑒: the size of each embedding region

𝛼 : the watermark strength

𝛽 ∈ {0, 1}: the bit to be embedded

𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹, 𝑠𝑖𝑧𝑒, 𝑛𝑒 )
for 𝑟𝑒𝑔𝑖𝑜𝑛 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛𝑠 do

𝑟 ← 𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

ℱ(𝑟 ) ← 𝐷𝑊𝑇 (𝑟 ) .𝐻𝐿3

ℱ(𝑟 ′𝑤𝑚) ← (1 + (−1)𝛽𝛼)ℱ(𝑟 )
𝑟 ′𝑤𝑚 ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝐷𝑊𝑇 (ℱ(𝑟 ′𝑤𝑚))
𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 𝑟 ′𝑤𝑚

end for

Algorithm 2 Watermark Extraction

Input:

𝐹 = (𝑓1, 𝑓2, ...), 𝑛𝑒 , 𝑠𝑖𝑧𝑒
Output:

the bit extracted from 𝐹

𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹, 𝑠𝑖𝑧𝑒, 𝑛𝑒 )
𝑣𝑜𝑡𝑒𝑠 ← [0, 0]
for 𝑟𝑒𝑔𝑖𝑜𝑛 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛𝑠 do

𝑟 ′𝑤𝑚 ← 𝑟𝑒𝑔𝑖𝑜𝑛.𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

𝑟𝑎𝑑 𝑗 ← 𝑓𝑟𝑒𝑔𝑖𝑜𝑛.𝑖𝑛𝑑𝑒𝑥−1 .𝑠𝑢𝑏𝑅𝑒𝑔𝑖𝑜𝑛(𝑟𝑒𝑔𝑖𝑜𝑛.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) .𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

𝑆 ′𝑤𝑚 ← 𝑆𝑉𝐷 (𝐷𝑊𝑇 (𝑟 ′𝑤𝑚) .𝐻𝐿3)
𝑆𝑎𝑑 𝑗 ← 𝑆𝑉𝐷 (𝐷𝑊𝑇 (𝑟𝑎𝑑 𝑗 ).𝐻𝐿3)
𝑣𝑜𝑡𝑒𝑠.𝑎𝑡 ( |𝑆 ′𝑤𝑚 | > |𝑆𝑎𝑑 𝑗 |? 0 : 1) += 1

end for

return 𝑣𝑜𝑡𝑒𝑠.𝑎𝑡 (0) > 𝑣𝑜𝑡𝑒𝑠.𝑎𝑡 (1)? 0 : 1

SVD operation on an 𝐶1 × 𝐶2 matrix has a time complexity of

𝑂 (𝐶1(𝐶2)2) [38], assuming 𝐶1 ≥ 𝐶2. Since we only care about 𝛽

rather than 𝑆𝑤𝑚 in the extraction stage, we can directly set 𝑆𝑤𝑚
equal to 𝑆 . Then Equation (1) can be re-written as

𝑆 ′𝑤𝑚 = (1 + (−1)𝛽𝛼)𝑆. (2)

Consequently, ℱ(𝑟 ′𝑤𝑚) = 𝑈𝑆 ′𝑤𝑚𝑉
𝑇 = 𝑈 (1 + (−1)𝛽𝛼)𝑆𝑉𝑇 =

(1 + (−1)𝛽𝛼)ℱ(𝑟 ). Based on this, we propose to directly compute

ℱ(𝑟 ′𝑤𝑚) through scaling ℱ(𝑟 ) by (1 + (−1)𝛽𝛼) without explicitly
performing SVD to obtain 𝑆 . This method allows us to polarize the

frame’s singular values without resorting to the time-consuming

SVD operation during the embedding stage. Since the extraction

stage does not require real-time execution as the embedding stage

does, we still perform SVD to obtain 𝑆 ′𝑤𝑚 and 𝑆 , and determine the

extracted bit as 0 if and only if |𝑆 ′𝑤𝑚 | > |𝑆 |. As evaluated in Sec-

tion 6.3, comparing the singular values (i.e., 𝑆 ′𝑤𝑚 and 𝑆) is of higher

robustness than directly comparingℱ(𝑟 ′𝑤𝑚) andℱ(𝑟 ). The reason
is that singular values of a matrix capture the intrinsic characteris-

tics of a matrix and are thus more robust than the original matrix

when facing attacks. Due to the fact that this approach performs

SVD explicitly only during the extraction stage, we refer to it as a

semi-explicit SVD-based watermarking scheme.



StreamingTag: A Scalable Piracy Tracking Solution for Mobile Streaming Services ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Randomized Embedding Region Selection. We begin by ran-

domly selecting multiple host frames from each segment and then

randomly selecting an embedding region from each selected host

frame. The watermark is not embedded in the entire host frames,

but only in the selected regions. As discussed in Sec. 4.1, this may re-

duce the interdependence among different votes, thereby increasing

the accuracy of the majority voting-based watermark extraction.

4.3 AlgorithmWorkflow

We are able to propose a watermarking algorithm based on the

aforementioned techniques. The algorithm is formed of two parts:

embedding and extraction, which are described in detail in Algo-

rithm 1 and Algorithm 2. The embedding part can embed a single

bit into a segment. Both parts make use of the same pseudo-random

number generator to determine the location of the embedding re-

gions. The time complexity is𝑂 (𝑛𝑒 · 𝑠𝑖𝑧𝑒2) of the embedding stage,

and 𝑂 (𝑛𝑒 · 𝑠𝑖𝑧𝑒3) of the extraction stage, where 𝑛𝑒 represents the

number of embedding regions in a single segment, and 𝑠𝑖𝑧𝑒 repre-

sents the width of a square embedding region. As for processing

the whole streaming video consisting of 𝑚 segments, the algo-

rithm needs to be called𝑚 times, increasing the complexities to

𝑂 (𝑚𝑛𝑒 · 𝑠𝑖𝑧𝑒2) and 𝑂 (𝑚𝑛𝑒 · 𝑠𝑖𝑧𝑒3).

5 Fingerprint Generation and Accusation

As proved in Theorem IV.2 of [3], there are no deterministic

(i.e., totally secure with no errors) fingerprinting codes against the

collusion attack. Following the research trend of collusion-resistant

fingerprinting, we employ a randomized fingerprinting strategy to

effectively defend against the CR attack. This strategy is based on

the Tardos fingerprinting scheme [36]. We begin by introducing

the Tardos code and then describe how we build a fingerprinting

system for streaming and live streaming services.

5.1 The Tardos Fingerprint Scheme

Generation. In the Tardos scheme, the fingerprint length is de-

noted as𝑚 = 𝐴𝑐2
0
𝑙𝑛𝑛

𝜂 , where 𝐴 is a constant coefficient, 𝑐0 is the

maximum number of colluders defendable by the system, 𝑛 is the

number of users, and 𝜂 is the desired upper bound of 𝑃𝐹𝑃 (i.e., the
probability that at least one innocent user is falsely accused). All

users’ fingerprints are denoted as a 𝑛 ×𝑚 matrix 𝑋 , where its 𝑗-th

row, 𝑋 𝑗 , is the fingerprint assigned to the 𝑗-th user.

Every time a user requests the digital content, a fingerprint will

be generated independently and added to 𝑋 as its new row. Before

generating any user fingerprint,𝑚 parameters (i.e., 𝑝 (𝑖)
1

, 1 ≤ 𝑖 ≤ 𝑚)

need to be sampled in advance. The probability density function

used to sample 𝑝
(𝑖)
1

from [𝑡, 1 − 𝑡] is

𝑓 (𝑝) = 𝑁𝑡/
√︁
𝑝 (1 − 𝑝), (3)

where the coefficient 𝑁𝑡 ensures

∫
1−𝑡
𝑡

𝑓 (𝑝)𝑑𝑝 = 1, and the cutoff

parameter 𝑡 can be tuned to adapt to different performance require-

ments. Typically 𝑡 is set to a small positive number. The reason

for using such 𝑓 (𝑝) and a small 𝑡 will be discussed later in Sec-

tion 5.2. Then, each bit 𝑋
(𝑖)
𝑗

in 𝑥 𝑗 is sampled independently, with

𝑃 [𝑋 (𝑖)
𝑗

= 1] = 𝑝
(𝑖)
1

and 𝑃 [𝑋 (𝑖)
𝑗

= 0] = 𝑝
(𝑖)
0

= 1 − 𝑝 (𝑖)
1

.

Accusation. Denote the set of colluders as 𝐶 , where 1 ≤ 𝑐 =

|𝐶 | ≤ 𝑐0, and the sub-matrix of 𝑋 that corresponds to 𝐶 as 𝑋𝐶 .

The fingerprint embedded in the pirated copy 𝑦 can be viewed

as 𝑦 = (𝑦 (1) , ..., 𝑦 (𝑚) ) = 𝜌 (𝑋𝐶 ), where 𝜌 is a (deterministic or

probabilistic) function determined by the collusion strategy, and

𝑦 (𝑖) ∈ {0, 1}.
The accusation module accuses colluders based on the calcu-

lated accusation score. For any user 𝑗 that once requested the video,

the accusation score for the user is computed as 𝑠 𝑗 =
∑𝑚
𝑖=1 𝑠

(𝑖)
𝑗

=∑𝑚
𝑖=1

(
𝛿
𝑦 (𝑖 ) ,𝑋 (𝑖 )

𝑗

𝑔1 (𝑝 (𝑖)
𝑦 (𝑖 )
) + (1 − 𝛿

𝑦 (𝑖 ) ,𝑋 (𝑖 )
𝑗

)𝑔0 (𝑝 (𝑖)
𝑦 (𝑖 )
)
)
, where 𝛿𝑥,𝑦 ={

1, if 𝑥 = 𝑦,

0, if 𝑥 ≠ 𝑦,
, 𝑔1 (𝑝) =

√︃
1−𝑝
𝑝 , and 𝑔0 (𝑝) = −

√︃
𝑝

1−𝑝 . The intu-

itions behind such 𝑠 𝑗 are as follows: (1) The 𝑗-th user should be

more suspicious if 𝑦 (𝑖) = 𝑋
(𝑖)
𝑗

. Following this formula, the user’s

accusation score will thus be increased by |𝑔1 (𝑝 (𝑖)
𝑦 (𝑖 )
) |, as𝑦 (𝑖) = 𝑋

(𝑖)
𝑗

leads to 𝛿
𝑦 (𝑖 ) ,𝑋 (𝑖 )

𝑗

= 1. Otherwise, in case that𝑦 (𝑖) ≠ 𝑋
(𝑖)
𝑗

, the user’s

accusation score will be decreased by |𝑔0 (𝑝 (𝑖)
𝑦 (𝑖 )
) |. (2) In the case of

𝑦 (𝑖) = 𝑋
(𝑖)
𝑗

, the smaller the value of 𝑝
(𝑖)
𝑦 (𝑖 )

is, the fewer the number of

users having their 𝑖-th fingerprint bit equal to𝑦 (𝑖) are, and the more

suspicious the 𝑗-th user should be (because the 𝑗-th user is one of

the few users owning that𝑦 (𝑖) ). As 𝑔1 (𝑝) is a monotonic decreasing

function, increasing the accusation score by 𝑔1 (𝑝) correctly reflects
the relationship between 𝑝

(𝑖)
𝑦 (𝑖 )

and the degree of suspicion. (3) For

any position 𝑖 , 𝑠
(𝑖)
𝑗

has an expectation of 0 and a variance of 1 over

all the users (i.e., all the values of 𝑗 ).
The threshold value of the accusation is 𝑧 = 𝐵𝑐0𝑙𝑛

𝑛
𝜂 , where 𝐵

is a constant coefficient. If and only if 𝑠 𝑗 > 𝑧, the 𝑗-th user will

be accused. Using this accusation strategy, it can be theoretically

guaranteed [36, 46] that 𝑃𝐹𝑃 < 𝜂 holds with carefully selected 𝑡 , 𝐴

(the coefficient of the code length𝑚), and 𝐵 (the coefficient of the

accusation threshold).

5.2 Discussion of the CR attack

Formal description. The collusion strategy used in the CR attack

model can be formalized as follows:

• Assumption 1: Marking Condition. If and only if ∃𝛽 ∈ {0, 1}
s.t. ∀𝑗 ∈ 𝐶,𝑋 (𝑖)

𝑗
= 𝛽 , the 𝑖-th position will be considered unde-

tectable by colluders, and 𝑦𝑖 = 𝛽 will always hold.

• Assumption 2: Independent Strategy. For any 𝑖 ≠ 𝑗 , the

sampling of 𝑦𝑖 is independent from that of 𝑦 𝑗 .

• Assumption 3: Equiprobable Strategy. If we define 𝑏
(𝑖)
𝛽

=

|{ 𝑗 |𝑋 (𝑖)
𝑗

= 𝛽, 𝑗 ∈ 𝐶}|, 𝑃 (𝑦𝑖 = 𝛽) =
𝑏
(𝑖 )
𝛽

𝑐 will hold for each

position 1 ≤ 𝑖 ≤ 𝑚 and each bit 𝛽 ∈ {0, 1}. In other words, for

each position 𝑖 , the colluders randomly select one member, with

the selection rate of each member being
1

𝑐 . Then the segment

received by the selected member will be used as the 𝑖-th part of

the pirated copy.

Improving the Tardos code under the CRmodel. Themarking

condition has been widely used in previous works [21, 36, 46]. To

utilize the marking condition, the cutoff parameter 𝑡 used in the

distribution function (see Equation (3)) is typically set close to 0
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in early works [36, 46]. As the distribution is biased towards two

ends of [𝑡, 1 − 𝑡] (in contrast to values around 𝑝 = 1

2
), such 𝑡

leads most 𝑝
(𝑖)
1

close to either 0 or 1. Consequently, the colluders

will receive the same variant at most positions. According to the

marking condition, they will have no choice on these sections,

making their specific collusion strategy have limited influence on

their chance of being caught.

Although a value 𝑡 close to 0 takes advantage of the marking

condition, it reveals limited information about the source of piracy

at most positions, where nearly all users receive the same variant.

As a result, the fingerprint length is rather long, reducing the prac-

ticality of the fingerprint code. To avoid such issue, we re-select the

value of 𝑡 by deducing the expectation of the sum of all colluders’

accusation scores under the three assumptions of the reasonable

CR attack model. We set 𝑡 to 0.5 with the support of a theoretical

analysis (see the following Section 5.3), and greatly reduce the code

length needed to defend the same number of colluders (or defend a

larger group of colluders with the same code length).

5.3 Parameter Selection

Objectives. When analyzing the Tardos scheme’s security level,

two often used metrics are 𝑃𝐹𝑃 (see Section 5.1) and 𝑃𝐹𝑁 (which

represents the probability that no guilty user will be correctly ac-

cused of piracy). The precise values of three adjustable parameters,

namely𝐴, 𝐵, and 𝑡 , can affect both 𝑃𝐹𝑃 and 𝑃𝐹𝑁 . We derive optimal

parameter values theoretically for the CR assault model in order to

satisfy the following objectives:

• Objective 1: when 1 ≤ 𝑐 ≤ 𝑐0, 𝑃𝐹𝑃 ≤ 𝜂.

• Objective 2: when 1 ≤ 𝑐 ≤ 𝑐0, 𝑃𝐹𝑁 ≤ 𝜖 .

• Objective 3:𝐴, the coefficient of the fingerprint length𝑚, should

be set as small as possible, so that the number of segments from

the streaming video is no less than𝑚.

• Objective 4: The value of 𝑡 should be independent of 𝑐0 (which

could possibly be related to 𝑛), 𝑛 and𝑚 (which is related to the

unpredictable duration of the video in the case of live streaming

services), so that the fingerprint generation process can directly

boot up without an arbitrary estimation of these values.

Sufficient Conditions Theorems. The sufficient conditions for

Objective 1 and Objective 2 are summarized in the following two

theorems. Theorem 5.1 is proved by Škorić et al. [46], while the
proof of Theorem 5.2 is conducted in Appendix A.2.

Theorem 5.1 (The sufficient condition for Objective 1).

If the parameter values satisfy 1.7√︃
1−𝑡
𝑡

>= 𝐵
2𝑐0𝐴

, and

𝐵2/(4𝐴) ≥ 1, (4)

Objective 1 will be achieved.

Theorem 5.2 (The sufficient condition for Objective 2).

If the colluders’ strategy conforms to Assumption 1 - 3, and �̃� =
𝐸 [∑𝑗∈𝐶 𝑠 𝑗 ]

𝑚 satisfies �̃� ≤ 3.4

√︃
𝑡

1−𝑡 , and

𝐴�̃� − 𝐵 ≥ 0, (5)

and (𝐴�̃�−𝐵)
2

𝐴
≥ 4𝑙𝑛 1

𝜖

𝑐0𝑙𝑛
𝑛
𝜂

, Objective 2 will be achieved.

To meet Objective 1 and Objective 2, we instead try to meet

the above sufficient conditions. If we only consider the inequality

(4) and (5), we will get:
𝐵
�̃�
≤ 𝐴 ≤ 𝐵2

4
. Then the optimal value of

A would be 𝐴∗ = 4

�̃�2
. According to Lemma A.1 in Appendix, �̃�

obtains its maximum value 1 if and only if 𝑡 = 1

2
, so the minimum

value of𝐴∗ is 4. However, we actually cannot ignore other equations
occurring in the above two theorems. Therefore, to meet both the

sufficient conditions listed above and the remaining objectives (i.e.,
Objective 3 - 4), StreamingTag instead sets 𝑡 to 1

2
, 𝐴 to 4(1 +

√︁
𝜙),

and 𝐵 to 4 + 2
√︁
𝜙 , as long as 𝜙 =

8𝑙𝑛 1

𝜖

𝑐0𝑙𝑛
𝑛
𝜂

≤ 1. With this setting, we

can verify that all the inequalities in Theorem 5.1 and 5.2 hold.

Parameter Selection Strategy in StreamingTag. StreamingTag

sets 𝑡 to 0.5 for the fingerprint sampling. Once the preprocessing

stage ends, the number of segments is determined, and the finger-

print length𝑚 is fixed to that number. Since the number of users,

𝑛, grows over time, StreamingTag will update the parameters (𝜂,

𝜖 , 𝑐0, 𝐴, 𝐵, and 𝑧; excluding 𝑡 and𝑚) as follows for every captured

pirated copy:

• Step 1: Set 𝑛 to the number of users that have requested the

legitimate video from the streaming platform so far.

• Step 2: Init 𝜂 and 𝜖 to 0.1.

• Step 3: Compute the maximum integer 𝑐0 s.t. 𝜙 =
8𝑙𝑛 1

𝜖

𝑐0𝑙𝑛
𝑛
𝜂

≤ 1 and

4(1 +
√︁
𝜙)𝑐2

0
𝑙𝑛( 𝑛𝜂 ) ≤ 𝑚. If no such 𝑐0 exists and 𝜖 < 1, increase 𝜖

by 0.01 to decrease 𝜙 , and then restarts Step 3.

• Step 4: Select the value of 𝜂 so that 4(1+
√︁
𝜙)𝑐2

0
𝑙𝑛( 𝑛𝜂 ) =𝑚 holds.

The value of 𝜂 will always decrease after this step. Intuitively,

this indicates that every segment will be used as part of the

fingerprint to lower the bound of error rate.

• Step 5: Set 𝐴 to 4(1 +
√︁
𝜙), 𝐵 to 4 + 2

√︁
𝜙 , and 𝑧 to 𝐵𝑐0𝑙𝑛( 𝑛𝜂 ).

Example. Consider a video of 15 minutes. Through properly

setting the parameters of the encoder, the length of each segment is

fixed to a constant value (e.g., 1 second), and thus 900 independently
coded segments will be generated. Each segment has two differently

watermarked versions, representing bits 0 and 1, respectively. As

suggested above, 𝑡 = 1

2
is used to generate fingerprints.

In case a pirated video is redistributed, the streaming platform

will use the parameter selection strategy above to determine the

parameters. The platform examines its database to confirm that

100,000 users have viewed the video, and thus sets𝑛 to 100,000. Then

both 𝜂 and 𝜖 are initialized to 0.1. Following the above Step 3, 𝑐0 is

set to 3, the maximum integer s.t. 𝜙 ≤ 1 and 4(1 +
√︁
𝜙)𝑐2

0
𝑙𝑛( 𝑛𝜂 ) ≤

𝑚 = 900 hold. Currently, 4(1+
√︁
𝜙)𝑐2

0
𝑙𝑛( 𝑛𝜂 ) ≈ 829 < 900, indicating

that some segments will not be used for fingerprint embedding.

To avoid such waste, the platform follows the above Step 4 to set

𝜂 to approximately 0.0225. Finally, with 𝜂 ≈ 0.225, 𝑐0 = 3, and

𝜖 = 0.1, the platform further sets 𝐴 to 4(1 +
√︁
𝜙) ≈ 6.53, 𝐵 to

4 + 2
√︁
𝜙 ≈ 5.27, and 𝑧 to 𝐵𝑐0𝑙𝑛( 𝑛𝜂 ) ≈ 241.8. An accusation score

will then be calculated for every one of the 100,000 users, and a

user will be accused only if the score exceeds 𝑧. A collusion group

of no more than three members will be captured with a probability

of 1 − 𝜂 ≈ 98%, if their collusion strategy meets the CR model.
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Video ID 1 2 3 4 5 6 7 8 9

Category Chat Dance Western Musical Guitar Playing Variety Show Science Documentary Game Show

Resolution 1280 × 720 1920 × 816 1920 × 1080
Video Length 01:30:46 01:09:38 01:39:31 01:15:45 01:25:28 01:06:39 01:15:28 01:01:34 01:34:55

Entire

Video

EM

Duration 08:11 6:18 14:28 15:25 16:16 12:30 13:34 11:51 17:55

Rate (fps) 277 276 170 123 131 133 139 130 133

EX

Duration 01:57 01:19 02:38 02:25 02:31 01:48 01:59 02:15 03:19

Rate (fps) 1164 1322 945 784 849 926 951 684 716

Single

Region

EM (ms) 6.7 6.7 6.9 7.0 6.9 6.9 6.8 7.0 6.9

EX (ms) 13.9 13.2 16.0 17.8 17.2 17.0 15.4 17.2 18.4

Size Inc (‰) 2.7 1.5 7.7 1.8 3.8 7.1 5.4 1.3 3.7

Annotations: 1. Abbreviations used in the 2nd column: EM - Embedding; EX - Extraction 2. Format of time intervals: (HH:)MM:SS

Table 2: The attributes and QoS metrics of each test video.

6 Evaluation

We examine StreamingTag in this section with comprehensive

experiments. The preprocessing pipeline is prototyped on top of

FFmpeg [1], with the proposed watermarking technique imple-

mented as a filter in FFmpeg. The evaluation is primarily concerned

with three aspects: (a) we assess StreamingTag’s impact on QoS via

several metrics, including latency, bandwidth, and fidelity; (b) we

assess its robustness against the NR attack; and (c) we assess its

end-to-end collusion resistance against the CR attack.

6.1 Experimental Setup

We evaluate StreamingTag’s performance using nine distinct

films, the key attributes of which are presented in the upper part of

Table 2. All test videos are at a frame rate of 25 frames per second

(fps). The processing latency of StreamingTag is measured on a

desktop computer equipped with an AMD Ryzen 9 5950X processor

and 128GiB memory. The proposed watermarking algorithm’s

resistance to a software-based screen recording attack is evaluated

on an Android phone (i.e., the phone is used as a mobile video

playing terminal, and a pirated video is recorded by its built-in

screen recorder).

We set the watermark strength 𝛼 in Algorithm 1 to 0.2. We set 𝑛𝑒 ,

the number of watermarked frames within a single segment, to 1,

as such setting can ensure strong robustness (as demonstrated later

in Section 6.3) with minimal overhead. The size of each embedding

block is set to 512. To encode the watermarked video for large-scale

distribution, we employ the H.264 encoder. The H.264 encoder’s

keyint and min-keyint parameters are both set to 25, resulting in

a 1-second length for each video segment. To enable fast encoding,

we set the bframes parameter to 0, the rc-lookahead parameter to

0, the preset parameter to superfast, and the tune parameter to

zerolatency. To enable the advanced features of H.264 for efficient

delivery, we set the profile:v parameter to high.

6.2 Evaluation of QoS

We use three metrics, i.e., processing latency, bandwidth con-

sumption, and video fidelity to evaluate the QoS of StreamingTag:

• Processing latency measures the running performance of the

watermarking algorithm, which is the indicator to determine if

the algorithm can run in real-time.

• Bandwidth consumption measures the overhead of the water-

marking algorithm.

• Video fidelity measures how invisible the watermark is, indi-

cated by two factors, i.e., peak signal-to-noise ratio (PSNR) and

structural similarity index (SSIM) [39]. PSNR is determined by

the mean square difference between the original video and its

watermarked version, while SSIM better replicates the behavior

of the human visual system.

Processing Latency. Wemeasure the processing latency to assess

the cost introduced by StreamingTag. Specifically, we first measure

the cost of processing the entire video. The durations of generating

all watermarked variants from the test video (decoding, watermark

embedding, and re-encoding) and extracting the embedded finger-

print from a complete copy (decoding and watermark extraction)

are recorded. The frame rates of these two processes are computed.

Then, we determine how much CPU time our watermarking al-

gorithm requires to process a single embedding region. Through

adding instrumentation codes [17] into the implemented FFmpeg
watermarking filter, the time consumed for encoding and decoding

is excluded while measuring the CPU time.

The middle part of Table 2 summarizes the findings, from which

we can deduce that: (a) The frame rate of processing the entire

video is significantly higher than 25 fps, verifying that Streaming-

Tag is suitable for real-time streaming services; (b) The proposed

watermarking algorithm is quite lightweight as it takes only several

milliseconds to process a single region of shape 512 × 512.
Bandwidth Consumption. Video encoding techniques compress

the raw video by exploiting its spatial and temporal redundancy.

Since fingerprints are embedded into the original video through wa-

termarking technologies in StreamingTag, the amount of both spa-

tial and temporal redundancy may decrease greatly with a poorly

designed watermarking technology. In consequence, the size of a

watermarked video could be possibly larger than that of an un-

watermarked one, leading to larger bandwidth consumption and

a worse QoS. To demonstrate that StreamingTag does not suffer

from such a problem, we measure the increase of the video size

after watermarking, by comparing the average size of watermarked

segments and that of unwatermarked ones.
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(a) CDF of PSNR (b) CDF of SSIM

Figure 4: CDF of PSNR and SSIM.

To generate unwatermarked segments, we first decode the video

and then partition it into successive segments, keeping all H.264

encoder parameters constant for a fair comparison. As shown in

the last row of Table 2, the video size increases are less than 1%

for all test videos. As a result, we can conclude that StreamingTag

almost never consumes additional bandwidth.

Video Fidelity. Some visible artifacts may exist in the water-

marked video and severely degrade the QoS, if the proposed water-

marking algorithm modifies the segment in an inappropriate way.

Therefore, we measure the fidelity of the watermarked video to

validate if our watermarking algorithm incurs such a problem.

For each test video, we first transcode it to a series of unwa-

termarked segments. In accordance with StreamingTag’s config-

uration, each segment has a duration of 1 second. Then we use

StreamingTag to convert each test video into watermarked seg-

ments. PSNR and SSIM are computed between the embedding re-

gions in the watermarked segments and the regions located at the

same position of the unwatermarked segments.

The results are shown in Fig. 4. Since a PSNR higher than 30dB

(or an SSIM higher than 0.98) is considered good, we can conclude

from the figure that StreamingTag does not sacrifice video fidelity.

6.3 Robustness of Watermarking

Comparison to Alternatives. The robust extraction of embed-

ded bits lays the foundation for fingerprinting-based accusation.

Therefore, we evaluate the robustness of our watermarking scheme

and compare it with several alternatives to demonstrate the effec-

tiveness and necessity of our design.

We compare our watermarking scheme with three alternatives.

For a fair comparison, we use the same set of embedding regions

while evaluating all the methods. The first alternative is referred

to as bipolar DWT watermarking. This alternative uses the same

strategy to embed the watermark as our method. However, while

extracting the watermark from a watermarked frame, this alter-

native works by calculating
𝑠𝑢𝑚 (𝑎𝑏𝑠 (𝐷𝑊𝑇 (𝑟 ′𝑤𝑚) .𝐻𝐿3))
𝑠𝑢𝑚 (𝑎𝑏𝑠 (𝐷𝑊𝑇 (𝑟𝑎𝑑 𝑗 ) .𝐻𝐿3)) , where 𝑠𝑢𝑚

computes the sum of all elements in a matrix, 𝑎𝑏𝑠 computes the

element-wise absolute values of a matrix, 𝐷𝑊𝑇 (𝑟 ).𝐻𝐿3 performs

3-level DWT and returns the𝐻𝐿3 frequency sub-band of 𝑟 . The pur-

pose of this comparison is to demonstrate the necessity of explicit

SVD for robust watermark extraction. The second alternative is the

baseline method described in Section 2.3. We use two watermark

images to represent bit 0 and bit 1 respectively, as discussed in

Figure 5: The extraction accuracy of different watermarking

schemes under different attacks.

Section 4.1. The third alternative is DCT-based watermarking [37],

which embeds the watermark in the DCT domain.

For each test video and each tested method, the measurement is

conducted several times with different kinds of visually insignifi-

cant modifications performed. Specifically, in addition to the basic

case where the attackers perform no modification on the H.264-

encoded segment, we mimic the attacker’s behavior by decoding

the watermarked and encoded segment, modifying (through Gauss-

ian noising of 𝜎 = 10, scaling with a factor of 0.75 or 1.25, or 15× 15
median filtering), and then re-encoding (with H.264 again) the mod-

ified segments for illegal re-distribution. The attack is conducted

by transcoding the watermarked segment with some built-in FFm-
peg filters, including scale, noise, and median filters. To extract the

watermark from scaled segments, we first decode them and then

re-scale them to the original resolution.

The results are shown in Fig. 5, where the five settings of attacks

are abbreviated for simplicity. We can conclude that: (a) Both our

scheme and bipolar DWT watermarking share the same embedding

scheme and achieve higher robustness than the other two alterna-

tives. This validates the effectiveness of polarizing two different

variants along with opposite directions for higher robustness in the

case of low-density watermark embedding. (b) Although bipolar

DWT watermarking achieves almost the same level of extraction

accuracy as our scheme under most types of attacks, our scheme

still outperforms it under very strong attacks, i.e.,H.264 plus 15×15
Median Filter plus H.264. This proves that explicit SVD operation

in the extraction stage indeed captures the intrinsic characteristics

of a matrix and contributes to accurate extraction. (c) Our scheme

has an accuracy greater than 90% under most scenarios, realizing

an improvement of 2.25x at most and 1.5x on average when com-

pared with traditional SVD-based watermarking. As demonstrated

shortly later in Section 6.4, such a level of robustness is enough for

fingerprinting-based colluder accusation, which demonstrates the

effectiveness of our watermarking scheme. Besides, the robustness

can be further boosted by randomly selecting multiple embedding

regions from a segment with a 𝑛𝑒 > 1.

Screen Recording. We first download the entire test videos on

an Android phone, and then run the built-in screen recorder while

playing them. Then watermarks are extracted from all recorded

videos. The accuracy is 94.6% on average for all videos, and reaches
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Figure 6: Collusion resistance.

to a maximum value of 99.8% for one pirated video. Such result

meets our expectation, since screen recording can be viewed as

a composite of decoding, scaling, and re-encoding. As discussed

previously in this subsection, ourmethod effectively defends against

such a composite attack.

6.4 Security under CR Attack

To demonstrate the superiority of our parameter selection strat-

egy against the CR attack model, we compare it with the strategy in

the original Tardos scheme [36] and that in the symmetric Tardos

scheme [46]. We consider a video of 7200 segments in this exper-

iment. Based on the extraction accuracy data in Section 6.3, we

assume an extraction accuracy of 90% in this experiment. we set

𝑛 to 100000 and rang 𝑐 from 1 to 10. The colluders’ attack strat-

egy conforms to the CR model.For each 𝑐 and each strategy, the

experiment is conducted 100 times.

For our method, we use the parameter selection strategy de-

scribed in Section 5.3. For the two alternatives, we set𝑚 to 7200

and 𝑐0 to the maximum number of colluders which can be defended

with a false positive error rate of 𝜂 < 0.1. The value of 𝑡 is then

determined based on 𝑐0, as required by [36, 46] (e.g., , 𝑡 is set to
1

300𝑐0
1 in [36]). Note that this assumption is only for comparison. In

real-world live streaming services, however, the alternatives have to

first arbitrarily estimate the number of segments, then determine a

value of 𝑐0 so that the code length𝑚 = 𝐴𝑐2
0
𝑙𝑛𝑛

𝜂 does not exceed the

number of segments, and finally select the value of 𝑡 (which affects

fingerprint generation) based on 𝑐0. To avoid an excessively large

code length, the alternatives may use a conservative estimate and

underutilize the collusion resistance capacity of the code, resulting

in inferior performance than our evaluation.

The results are shown in Fig. 6. Since 𝑃𝐹𝑃 equals to 0 in every

experiment, we don not present it in this figure. We observe that our

method defends more colluders under the CR attack. On average,

our strategy improves the recall rate (i.e., the ratio of the number of

accused colluders to the number of participating colluders) by 26%

when compared with [46], and by 58% when compared with [36].

7 Limitations and Future Work

Temporal desynchronization. Though the proposedwatermark-

ing scheme is demonstrated to be robust against various attacks,

all of them do not alter the temporal index of any frame. Therefore,

we can directly identify the host frames from a pirated video by

utilizing their indices. However, such property may not always be

guaranteed. First, in Internet-based streaming applications, some

frames may be lost when there is network congestion. Second,

malicious attackers could launch a so-called frame dropping or

insertion attack to disrupt the frame indices. To address this issue,

many recent works use scene change detection to identify the mo-

tion frame (i.e., a frame which is significantly different from the

previous frame) as the host frame for watermark embedding [31].

In this manner, even if the index of the motion frame is altered,

the motion frame will still be correctly identified in the extraction

stage via resorting to scene change detection. We expect to use

similar strategies in the future, yet the possibility that a determined

attacker uses the same scene change detection algorithm to identify

and then damage (or drop) motion frames must be handled well.

Deep learning-based attack. With the advance of deep learning

techniques, some researchers seek to compromise watermarking

techniques with deep neural networks (DNNs), so that the water-

mark is removed without degrading the visual quality [12, 22]. One

promising countermeasure is to integrate deep adversarial learning

into our method, while the heavy overhead of deep models must

be optimized to support large-scale streaming services.

Camcorder recording. We regard camcorder recording as more

thorny than software-based screen recording, since the camcorder

may be frequently shaken due to unsteady hands. Consequently,

the screen (which plays the streaming video) may experience trans-

lation and rotation in the recorded video. We expect to enforce

automatic alignment in the future, e.g., using KAZE feature points

to calculate and then canceling out the relative rotation [37].

Collusion strategy. Some colluders may employ a collusion

strategy different from that in the CR model. For example, they

could compare the received segment files at each position to find

out which ones are equal, and then randomly select one from all

the different variants. In that case, one countermeasure is to or-

thogonally use the proposed fingerprinting code and other codes

that resists other collusion strategies. In other words, multiple

independent fingerprints are generated for each user and simulta-

neously embedded into the distributed copy. Another measure is

to use 𝑞-ary (𝑞 > 2) bits to construct fingerprints, scattering users’

fingerprints into a large code space. Consequently, colluders are

unlikely to receive all variants at many positions, and the mark used

at each position of the pirated copy always has a higher correlation

to the marks received by colluders than those of innocent users,

whichever collusion strategy is adopted.

Distribution topologies. As different platforms may employ

different watermarking and fingerprinting technologies and refuse

to exchange relevant information for business reasons, attackers

could escape from accusation by fetching different parts of a video

from multiple streaming platforms to construct the entire pirated

copy. Mutual trust among streaming platforms must be established

to promote cooperation and respond to this piracy strategy. To

address mistrust between service providers and users in piracy
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tracing for peer-to-peer video distribution, researchers typically

resort to a trusted third-party [28, 29] or adopt the blockchain

technology [40]. We envision future deployments where similar

strategies are adopted to maintain trust among streaming platforms.

8 Related Work

DRM. DRM protects digital content by encrypting it before distri-

bution and requiring users to purchase digital licenses containing

the decryption key [34]. However, as discussed in Section 1, DRM

has several inherent drawbacks.

Anti-Camcording Technologies. Anti-camcording technologies

are mainly based on the difference between the human visual sys-

tem and the common digital cameras. For example, KALEIDO [44]

utilized the disparity between the refresh rate (which can be as large

as 240fps in the case of a high-end display screen) and the video rate

(24fps or 30fps typically) and re-encoded the original video frames

into multiple different frames, which are specially designed to pre-

vent camcording as well as preserve the human viewing experience.

LiShield [45] deployed smart LEDs flickering at high frequency and

in specialized waveforms, which are imperceptible to the human

visual system but not to the common digital cameras. Nevertheless,

these technologies require client-side modifications and cannot

prevent software-based screen recorders.

Collusion-Resistant Forensic Fingerprinting. Many earlier

works are aimed at deterministic fingerprinting strategies, where

an error rate of 0 must be guaranteed. Hollmann et al. [14] proposed
such a deterministic fingerprinting approach that requires 𝑐0 ≤ 2.

Staddon et al. [33] proposed a deterministic fingerprinting strategy,

which works under any possible value of 𝑐0. However, it unreal-

istically requires the alphabet size 𝑞 (i.e., the number of variants

for each video segment) is greater than or equal to 𝑛 − 1. Due to
these inherent limitations [7], recent work has concentrated on

non-deterministic fingerprinting, which allows for non-zero 𝑃𝐹𝑃
and 𝑃𝐹𝑁 . There exist two major categories of non-deterministic

fingerprinting schemes, i.e., the Boneh-Shaw scheme [3] and the

Tardos scheme [36, 46, 47]. Because the Tardos scheme’s code length

is nearly equal to the square root of the Boneh-Shaw scheme [36],

we base our fingerprinting approach on the Tardos scheme.

9 Conclusion

In this work, we propose StreamingTag, a scalable piracy tracing

framework for streaming services. To ensure interoperability with

CDNs, StreamingTag embeds fingerprints at the segment level. The

solution for robust fingerprint embedding incorporates a polar-

ized, semi-explicit, and randomized SVD watermarking algorithm.

Additionally, a collusion-resistant code is used to give collusion

resistance. The evaluation findings indicate that StreamingTag pro-

vides an acceptable level of service and considerably outperforms

previous techniques in terms of robustness and collusion resistance.

StreamingTag, we believe, is a significant step towards scalable,

reliable, and traceable video streaming.
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A Appendix

A.1 Derivation of the Value of �̃�
Lemma A.1. If the collusion strategy meets Assumption 1-3, the

exact value of �̃� will only depend on the parameter 𝑡 , and always
satisfy �̃� ≤ 1. The equality holds if and only if 𝑡 = 1

2
.

Proof: With the symbol 𝑏 defined in Assumption 3 we have:

�̃� =𝐸𝑝

[
𝐸
𝑏
(𝑖 )
1
∼𝐵𝑖𝑛𝑜𝑚 (𝑐,𝑝 (𝑖 )

1
)

[
𝑏
(𝑖)
1

𝑐
·
(
𝑏
(𝑖 )
1

(√︄
1−𝑝 (𝑖 )

1

𝑝
(𝑖 )
1

+

√︄
𝑝
(𝑖 )
1

1−𝑝 (𝑖 )
1

)
−𝑐

√︄
𝑝
(𝑖 )
1

1−𝑝 (𝑖 )
1

)
+
𝑐 − 𝑏 (𝑖)

1

𝑐
·
(
𝑐

√︄
𝑝
(𝑖 )
1

1−𝑝 (𝑖 )
1

−𝑏 (𝑖 )
1

(√︄
1−𝑝 (𝑖 )

1

𝑝
(𝑖 )
1

+

√︄
𝑝
(𝑖 )
1

1−𝑝 (𝑖 )
1

))����𝑝] ] (6)

=2𝐸𝑝 [
√︃
𝑝
(𝑖)
1
(1 − 𝑝 (𝑖)

1
)] .

From (6) we easily verify this lemma.

A.2 Proof of Theorem 5.2

Let 𝑠𝐶 =
∑

𝑗 ∈𝐶 𝑠 𝑗 and �̃�2 =
𝐸𝑦𝑋𝑝 [𝑠2𝐶 ]−𝐸

2

𝑦𝑋𝑝
[𝑠𝐶 ]

𝑚 . Following the

equation (21) in [46] we have

�̃�2 + �̃�2
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Combining the above equation and the proof process in Section

4.2 of [46], we easily prove Theorem 5.2.

A.3 Legend of Symbols

The main symbols are as follows:

Symbol Meaning Symbol Meaning

𝛼 watermark strength 𝑟 embedding region

𝑆
a matrix containing

singular values

𝑛𝑒
number of

embedding regions

𝑚 fingerprint length 𝐶 set of colluders

𝑛 number of users 𝑗 index of a user

𝑐0
StreamingTag

works for 𝑐 ≤ 𝑐0
𝑝

parameter of

generating 𝑋

𝑖
index of a segment

(or a fingerprint bit)

𝑋
a matrix of all

fingerprints

𝑠 accusation score 𝑧 accusation threshold

𝑦
fingerprint in

the pirated copy

𝐴
tuneable coeffi-

cient of𝑚

𝐵
tuneable coeffi-

cient of 𝑧
𝑡

tuneable cutoff

parameter

𝑃𝐹𝑃

probability of

false positive

accusation

𝑃𝐹𝑁

probability of

falsely negative

accusation

𝜂 we hope 𝑃𝐹𝑃 ≤ 𝜂 𝜖 we hope 𝑃𝐹𝑁 ≤ 𝜖
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