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ABSTRACT
In order to reduce the measurement error of low cost sensor
in the real-time mobile sensing network, rendezvous cali-
bration mechanism is widely used. To tackle the sparsity
of reference data and the lack of calibration opportunities,
we propose ST-ICM: a Spatial-Temporal Inference Calibra-
tion Model based on Gaussian Process Regression, assisting
the calibration task by creating more calibration grids in
both spatial and temporal dimensions. By using the GPR,
the inferred grids generated by ST-ICM are associated with
various confidence levels. Based on this property, we propose
to make use of a hyperparameter, i.e., variance threshold,
to balance the tradeoff between the quantity and quality of
the inferred grids. Specifically, only the grids with variances
below the threshold will be employed. We conducted ex-
periments using a real-world dataset collected in Nanjing,
China, to evaluate the performance of the proposed ST-ICM.
The experimenal results show that our model achieves 24%
improvement on error calibration compared to the baseline.
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1 INTRODUCTION
To achieve satisfactory urban management, fine-grained
sensing network (e.g., air quality sensing network) has been
deployed in the city thanks to the development of IoT tech-
nology. Specifically, the deployment of LCS (low cost sensor)
on vehicles can provide abundant and detailed data both
spatially and temporally[4][11][8], which alleviate lack of
high-resolved data due to the sparsity of standard static
stations. However, the LCS in the mobile sensor network
brings the inaccurate measurement problem, i.e., the LCS
will show bias in monitoring over time. And these errors are
not only from sensor itself but also the interference of dif-
ferent environments[7]. Hence, we can only mitigate these
errors by periodic calibration in field.
To calibrate the LCS, many previous work adopt the ren-

dezvous calibrationmechanism. As the LCS and the reference
meet within a reasonable spatial and temporal range, the
LCS can utilize the reference to do calibration. However,
limited number of static references usually results in the
lack of calibration opportunities for rendezvous calibration.
In order to solve this problem, some related work focus on
how to deploy reference stations[5] or apply the multi-hop
calibration[6]. Although these methods have achieved good
results, they rely on the regular movement pattern of the
LCS (e.g., sensor mounted on a bus). However, if we cannot
obtain the trajectory regularity of a moving LCS (e.g., sensor
mounted on a taxi), there is no guarantee that LCS will get
sufficient or quality calibration opportunities.
Therefore, we propose ST-ICM, a Spatial-Temporal Infer-

ence Calibration Model. Instead of finding the mobility pat-
tern, ST-ICM focuses on making better use of the reference
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Figure 1: Overview of proposed architecture for LCS calibration

data. As shown in Fig. 1, if the spatial-temporal trajectory of
a LCS meets the calibration grids, data pairs for calibration
are collected. Intuitively, the more calibration grids, the more
opportunities for LCS calibration. Hence, ST-ICM aims to
expand the coverage of calibration grids by GPR in a spatial-
temporal 3D map. Though GPR can infer all of the grids in
the spatial-temporal map, not every grid generated is suitable
for calibration, since they are of different confidence levels.
ST-ICM measures the degrees of confidence with the vari-
ance in the GPR results. Only the grids with variances below
a variance threshold will be employed. We finally find the
best variance threshold to control the quantity and quality of
calibration grids. Our contributions can be summarized as: 1)
we propose ST-ICM that expands the total calibration grids in
the spatial-temporal map, providing LCS more opportunities
for rendezvous calibration; 2) for these additional calibration
grids, ST-ICM measure the degree of confidence with the
variance in the GPR results. We optimize our ST-ICM by
evaluating the variance threshold that determines whether a
spatial-temporal grid can be a calibration grid; 3) we evaluate
ST-ICM on the real world dataset of PM2.5 measurements.
The results indicate the potential of our work.

2 METHODOLOGY
2.1 Overview
Fig. 1 shows howwe utilize GPR to tackle the LCS calibration
task step by step. In the leftmost picture, it is the scenario
that only static reference stations exist, and it provide sparse
reference data shown in the respective 𝑥 − 𝑦 − 𝑡 3D space
below the 𝑥 − 𝑦 2D map. Then mobile reference sensors are
added to the city, covering more area with extra reference
measurements, whose confidence level may decrease as time

goes.With a collection of data provided by both the static and
mobile references, we use GPR to infer PM2.5 concentration
in larger area[2][3], and each inferred grid has a variance
indicating its uncertainty, and we set a variance threshold to
control the number and the quality of calibration grids.
Specifically, we first divide the entire city map into uni-

form 𝑙 ∗ 𝑙 grids. The measurements provided by static and
mobile references are denoted as 𝑟 . And the grids containing
𝑟 are called calibration grids 𝑔. Using the reference measure-
ments 𝑟 , we can infer extra reference measurements 𝑟 ′ on
the adjacent grids or in the adjacent time intervals at the
current grid by GPR, and denote these expanded calirabtion
grids as 𝑔′. With all calibration grids 𝑔 and 𝑔′, the LCS can
collect data pairs (𝑢, 𝑟 ) or (𝑢, 𝑟 ′) at a time point 𝑡 for each
calibration grid it enters, where 𝑢 is the uncalibrated mea-
surement of LCS. When the LCS collects 𝑛 data pairs, the
calibration function 𝐶 (𝑢) can be computed by least squares
method to update the calibration parameters 𝜃 of the LCS.

2.2 GPR Inference Model
Given a training set 𝑇 =

{
(𝑧𝑖 , 𝑟 𝑖 )

}𝑁
𝑖=1, consisting of i.i.d. (in-

dependent and identically distributed) samples from some
unknown distribution, the GPR model can be defined as:
𝑟 𝑖 = 𝑝 (𝑧𝑖 ) + 𝜖, 𝑖 = 1, ..., 𝑁 . And 𝑧 is the data tuple (𝑥,𝑦, 𝑡)
where 𝑥 is the latitude, 𝑦 is the longitude and 𝑡 is the times-
tamp of the tuple. 𝜖 is i.i.d. noise subjected to normal distri-
bution 𝑁 (0, 𝜎2).

After the GPR model is defined, given a collection of test
samples 𝑉 =

{
(𝑧𝑖∗, 𝑟 𝑖∗)

}𝑁∗
𝑖=1, derived from the same undiscov-

ered distribution as training set 𝑇 , the posterior distribution
(𝑟∗ |𝑟, 𝑧, 𝑧∗) complies to 𝑁 (𝜇∗, 𝜎∗) according to conditional
Gaussian’s properties, where 𝜇∗ referring to the inference of
𝑃𝑀2.5 value, and 𝜎∗ is the variance indicating the uncertainty
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of the inference[9]. Specifically, we set a variance threshold
as a hyperparameter which determines whether an inferred
grid is the calibration grid. When we set it low, meaning the
calibration grids have lower uncertainty, resulting in fewer
calibration grids. In this case, each calibration grid may be
very accurate, but the calibration opportunities decrease.
When we set it high, the calibration grids in space and time
will increase, and the calibration opportunities of LCSs will
boost, but the calibration performance may decline since
the references are of high uncertainty. Therefore, finding an
appropriate variance threshold is crucial in optimizing our
model. And we evaluate this hyperparameter in next section.
3 EXPERIMENTAL EVALUATION
3.1 Experimental setup
Our experiments are conducted in Qinhuai District, Nanjing.
We deployed 21 static monitoring stations and dispatched
22 vehicles (including buses and taxis) carrying sensors to
detect PM2.5 concentration values. The experiment lasted
from November 28 to December 6, 2021, covering a total
of 127.5 square kilometers of the urban area. To verify the
performance of our experiments, we take the data of 21 static
monitoring stations as the reference static sensors. Among
the 22 mobile LCSs, 4 are assumed as reference mobile sen-
sors, and the other 18 are the LCSs needed to be calibrated,
on which we manually add s time-varying linear noise. We
take the original measurements as groundtruth. The spatial-
temporal grid size is set as 500m*500m*1min, meaning the
GPRwill be implemented everyminute to update the inferred
values with variances of all grids, ensuring that the data for
calibration is as accurate as possible. This setting basically
meets our requirements for fine-grained urban sensing. MAE
(Mean Absolute Error) is used as the evaluation metric.

Table 1: The Calibration MAE of Our Model
MAE of Calibration Data

No Calibration 5.71
Simple Calibration 2.81

ST-ICM 2.14

3.2 Evaluation of ST-ICM
We use two baselines for comparison with our method. "No
Calibration" refers to the data errors without calibration at all.
"Simple Calibration" refers to the calibration data without
using GPR. In this case, our calibration grids will be rela-
tively sparse, and many LCSs cannot be calibrated in time,
thus accumulating errors. Table 1 shows the performance of
our method. Our method improves 24% compared with the
baseline "Simple Calibration" without GPR.
3.3 Evaluation of ST-ICM under different

variance threshold
Fig. 2 shows the ST-ICM performance under different thresh-
old settings. When we take a variance threshold of 1, we

get the best balance between the quantity and quality of
calibration grids and achieve the best model performance.

Figure 2: Results of Different Variance Threshold

4 CONCLUSION AND OUTLOOK
In this paper, we propose a model leveraging inference tech-
niques for LCS calibration, and provide a new perspective to
consider calibration in a spatial-temporal map. In the future,
we plan to investigate other trade offs in our model (e.g., the
grid size), and the dispatch algorithms[1][10] for the mobile
references to achieve better inference for calibration.
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