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Abstract—Delivery drones provide a promising sensing platform
for smart cities thanks to their city-wide infrastructure and large-
scale deployment. However, due to limited battery lifetime and
available resources, it is challenging to schedule delivery drones
to derive both high sensing and delivery performance, which is
a highly complicated optimization problem with several coupled
decision variables. Meanwhile, this complex optimization problem
involves multiple interconnected decision variables, making it even
more complex. In this paper, we first propose a delivery drone-
based sensing system and formulate a mixed-integer non-linear
programming problem (MINLP) that jointly optimizes the sensing
utility and delivery time, considering practical factors including
energy capacity and available delivery drones. Then we provide an
efficient solution that integrates the strength of deep reinforcement
learning (DRL) and heuristic, which decouples the highly compli-
cated optimization search process and replaces the heavy compu-
tation with a rapid approximation. Evaluation results compared
with the state-of-the-art baselines show that DDL improves the
scheduling quality by at least 46% on average. More importantly,
our proposed method could effectively improve the computational
efficiency, which is up to 98 times higher than the best baseline.

Index Terms—Cyber-physical systems, deep reinforcement
learning, drone swarm, smart cities.
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I. INTRODUCTION

DRONES (aka. unmanned aerial vehicles) are becoming a
pivotal sensing platform for large-scale urban sensing. Due

to their three-dimensional mobility, autonomy, and sensing ca-
pacity, drones can gather data with high efficiency and perform in
more flexible urban sensing circumstances compared to ground
sensor networks [1], [2]. In particular, when multiple drones
are organized into a cohesive system, they are able to handle
complex tasks, such as searching for available parking spots,
detecting traffic congestion, and monitoring air pollution [3],
[4].

Researchers have proposed different methods for scheduling
drones to gather sensor data, most of them have primarily con-
centrated on dedicated drone scheduling [5], [6], [7]. However,
when conducting large-scale urban sensing, it requires a high
cost to build a large-scale drone swarm and a lot of human effort
for maintenance. Specifically, commercially available drones
like the DJI Inspire 3 [8] is more than $18,000, so that a swarm
with 50 drones may require around one million dollars. Besides,
since the battery life of commercial drones is usually less than
half an hour, it requires human labor to maintain charging
stations and recharge the drones during long operations.

Fortunately, due to the popularity of instant delivery and
the online shopping market [9], various delivery drones from
giant companies have emerged, which provide opportunities
for large-scale urban sensing in a cost-efficient way. Especially,
Meituan [10], one of China’s top internet companies, has deliv-
ered 170,000 meals by drones in the last two years in Shenzhen,
China. The proliferation of delivery services brings about the
city-wide distribution of delivery stations in high density, which
indicates delivery drones can cover a large part of the city.

In light of this, we advocate conducting urban sensing with
delivery drones. As shown in Fig. 1, a group of delivery drones
equipped with efficient sensors starts from the starting station,
visits the sensing task locations sequentially, and finally lands at
the terminal station of delivery. Typically, the sensing task can
be the inspection and mapping of important structural objects in
the city such as buildings, bridges, and power lines [11], [12],
[13], promoting the following operation of multiple robots. In
this way, delivery drones provide low-altitude and high-accuracy
sensing with little extra deployment effort [14]. Furthermore, by
leveraging the communication, and ubiquitous computing ser-
vices of delivery companies, the extra purchase and maintenance
costs can be greatly reduced.
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Fig. 1. Illustration of hiring delivery drones to perform urban sensing.

Our work aims to schedule the delivery drones intelligently
so that they satisfy both primary delivery demands and accom-
plish high-quality sensing tasks. Albeit inspiring, translating this
intuition into a practical delivery drones-based sensing system
is non-trivial and faces significant challenges:
� Inconsistent goals of delivery and sensing: To summarize,

our objective involves two parts: visiting all scattered de-
livery destinations and allocating time at particular stops
to collect sensing data. The former requires efficiency as
customers would want their delivery to take as little time
as possible, while the latter demands ample time for data
collection tasks. Besides, delivery tasks require that our
drone arrive at a particular destination, which is oftentimes
different from the places where sensing tasks take place.
This discrepancy in preferences poses a challenge in devis-
ing a mechanism that achieves high sensing performance
without compromising delivery performance. Therefore,
we are to design a solution that captures the sweet spot that
finds a balance between these two goals. This adds another
level of complexity to the average optimization problem,
which leads to the second major challenge below [15].

� Complex mixed integer optimization problem with two
intertwined decision variables: Combining two inconsis-
tent goals leads to a series of new problems, including
(i) assigning sensing tasks to drones, (ii) determining the
visiting order for each drone, and (iii) allocating sensing
time for each task. Optimizing these issues is akin to
solving a variant of the NP-hard capacitated vehicle routing
problem (CVRP) [16], but it’s more complex because the
time consumption of each task node is uncertain and needs
to be decided by our algorithm. Moreover, the involved
decision variables including discrete elements (task loca-
tions) and continuous factors (sensing time) jointly impact
drones’ energy consumption, leading to a complex mixed-
integer programming problem. Consequently, exhaustive
search or conventional optimization methods are infeasible
due to their computational demands and time-consuming
nature.

To tackle the above challenges, we present DDL, a deep re-
inforcement learning (DRL)-enhanced city-scale smart sensing
system based on the delivery drone swarm. DDL optimizes

both the sensing utility and delivery time with a limited energy
reserve.

To address the first challenge, We come up with a delivery
scheduling method that optimizes the task assignment, route
planning, and sensing time allocation for delivery drones to
ensure that sensing utility is maximized while delivery time is
minimized with reasonable constraints on energy capacity and
the number of delivery drones. The intuition behind combining
these two seemingly conflicting goals is the hidden similarity be-
tween patterns in sensing and delivery requests. Frankly speak-
ing, when choosing between different paths to get to the delivery
destination, there are room for us to alternate so that we could
traverse stops for sensing tasks without sacrificing significant
delivery time. We believe that by smartly assigning drones and
geographical pairing between sensing and delivery tasks, we
can stitch sensing stops into the delivery track so that we can
catch two birds with one stone, and our results confirm this
idea. We formalize the delivery drone scheduling problem as a
dual objectives mixed-integer non-linear programming problem
(MINLP), where an adjustable trade-off coefficient is used to
balance the importance of the two objectives.

To address the second challenge, we propose a novel
DRL-enhanced hierarchy scheduling approach that decomposes
the original problem into a two-stage optimization process,
which contributes to fast approximating the optimal solution.
Specifically, We design an upper-level learning-based method
to optimize the task assignment and route planning strategies,
and a lower-level heuristic algorithm determines the sensing
time allocation for each task to maximize the sensing utility.
During each optimization iteration, we enhance the allocation
of sensing time for each flight route based on the current task
assignment and route planning results. This updated allocation
is then used to update the task assignment and route planning.
This approach combines the advantage of DRL and heuristic
algorithm, building a neural network that can efficiently explore
the large search space without heavy computation. In summary,
the main contributions of this paper are listed as follows:
� Propose a delivery drone-based sensing system DDL, and

formulate a mixed-integer non-linear programming prob-
lem (MINLP) to jointly optimize sensing and delivery
performance, considering practical factors.

� Provide a DRL-enhanced hierarchy scheduling approach
that decomposes the original problem into a bi-level op-
timization process. We adopt neural networks to replace
the heavy computation in the upper-level optimization and
solve the simpler lower-level optimization problem with
the heuristic method.

� Evaluate our solution with extensive experiments based
on real-world delivery station data. Results show that our
proposed algorithm improves the scheduling quality and
computation efficiency by at least 46% and 98% compared
with the state-of-the-art baselines, respectively.

This paper presents an extended version of our previous
work [17]. The major modifications include problem definition,
method, and evaluation. The remainder of the paper is organized
as follows: Section II summarizes the related work. Section III
presents the system and problem definition. Section V introduces
system overview, key components, and algorithms. Section VI
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demonstrates extensive experimental results based on a real-
world dataset. Section VII concludes the paper.

II. RELATED WORK

A. Drone Scheduling for Urban Sensing

Drone-based sensing systems have drawn much attention in
both industry [18], [19] and research communities [20], [21].
Based on the characteristics of drones, many approaches have
been proposed to dispatch drones for various tasks, such as
monitoring [22], [23], surveillance [7], [24], and safety in-
spection [25], [26]. In such drone-based sensing systems, the
sensing task is typically collecting sensing data for the specific
application, and the utility of sensing refers to a combination
of the sensing quality and sensing quantity [27]. The sensing
quality is influenced by many task-specific factors, such as the
sensing angle [28], sensing distance [24], and environmental
situation [25], [29]. A longer duration for executing a sensing
task can result in the collection of more sensing data, thereby
enhancing the overall sensing utility [30], [31]. For example,
when a drone equipped with a camera inspects disasters, the
distance between drone and object has a significant impact on
the quality of the image [32], [33], a longer sensing time allows
the drone to gather more images [24], [34].

Several studies have explored the scheduling of delivery
drones for sensing tasks. For example, Xiang et al. [35] are
the first to study using delivery drones for crowdsensing. How-
ever, their design made efforts to manually derive an explicit
heuristic algorithm for the optimization problem, which is quite
time-consuming when scaled to more variables. Although Tao
et al. [36] started to apply a reinforcement learning algorithm
to address the trajectory design problem of delivery drones,
they simplify the drones’ energy consumption model without
considering the delivery weights. More recently, Chen et al. [17]
also aims at scheduling delivery drones, but their optimization
objective does not take the delivery time into account, which is
not feasible in practical instant delivery scenarios.

B. DRL for Combinatorial Optimization

Combinatorial optimization (CO) problems are commonly
used in various fields [37], [38]. The most significant chal-
lenge is the search space explosion (i.e., the probability grows
rapidly with the size of the problem, resulting in no polynomial-
time solutions) [39]. Traditionally, CO problems are solved
via manually designed heuristics that sequentially construct a
solution [40]. However, these hand-crafted methods highly rely
on expert knowledge about the optimization algorithm, which
may not be sufficient [41]. Besides, these approaches usually
suffer from heavy computation when dealing with large-scale
problems.

Recently, reinforcement learning (RL) has been adopted to
solve CO problems with better and faster results. RL enables
the algorithm to learn and evolve, via interaction with envi-
ronments or knowledge induction with look-ahead search [42],
[43]. Therefore, it is a natural tool to make algorithmic decisions
in a more principled and optimized way through supervised or
self-supervised training. RL has shown effectiveness in solving

TABLE I
IMPORTANT NOTATIONS

various CO problems, including traveling salesman problem
(TSP) [44], vehicle routing problem (VRP) [45], and maxi-
mum cut (MC) [46]. The majority of these works follow an
end-to-end manner, which is directly constructing a solution
from scratch [47]. More recently, researchers proposed hy-
brid approaches that combine machine learning and traditional
solver [47], [48]. However, these methods cannot be directly
applied to our problem, since we are dealing with a complex
dual-objective scenario. Our goal is to design an efficient DRL-
enhanced solution to enable the delivery drone-based sensing
system.

III. PROBLEM DEFINITION

In this section, we first provide definitions and background in
Section III-A. Subsequently, we discuss the objective of package
delivery and urban sensing in SectionIII-B. Finally, we formulate
the problem of delivery drone scheduling in Section III-C. For
ease of reference, the key notations for the system design are
shown in Table I.

A. Background and Definitions

Fig. 2 illustrates the architecture of the delivery drone-based
urban sensing system, which consists of four components. The
Drone Delivery Company provides a large number of delivery
drones equipped with different sensors according to the require-
ment of the Application System [49]. The delivery task informa-
tion, including the depots and destinations of the delivery tasks,
as well as the available drone number and energy limitation are
informed to the Scheduling System. The Scheduling System then
schedules the delivery drone to collect the sensing data based
on the delivery task information and sensing task information
(e.g., tasks’ locations and utilities) [50]. The Data Request End
collects and analyzes the sensing data [51], [52] to infer the
phenomena of common interest, which can be used by the
Application System.

A typical delivery system follows a tree structure [53], com-
posed of starting delivery stations and terminal delivery stations.
The daily products are dispatched from the starting delivery
stations to the terminal delivery stations. If a delivery drone
is recruited, it will be equipped with various sensors according
to practical application, such as PM2.5 sensors for air quality
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Fig. 2. Illustration of DDL’s architecture, which is composed of four subsystems.

measurement [54]. Later, given the delivery task information
and sensing task information, the Scheduling System decides
(1) Sensing Task Assignment, which selects part of sensing
task to sense for each drone [55]; (2) Sensing Time Allocation,
which allocate time of each selected sensing tasks to collected
sensory data; (3) Drone Scheduling, which schedules drones
to visit and sense the selected sensing tasks one by one while
delivering packages from predefined depots to destinations. Note
that the Scheduling System is not dependent on the particular
applications and can be used for any type of high-level data
collection task. The design details will be discussed in Section V.
We define other key concepts as follows.

Delivery Team (DT): We define the drones for the same deliv-
ery pair between starting delivery station and terminal delivery
station as a Delivery Team (DT). Let K = {1, 2, . . . ,K} denote
a set of delivery drones in a DT, which has up to K delivery
drones. The direct flying distance from the starting delivery
station to the terminal delivery station is d0, while the flying
distance with sensing for drone k is dk. The maximum available
energy of the drone k is σk.

Sensing Task: In the urban area, there is a set of V sensing
tasks, denoted asV = {1, 2, . . . , V }, which are distributed. Each
task v ∈ V is assigned to a specific delivery drone k, and the
drone takes a certain amount of time tkv to complete the task.
The quality of the sensing is influenced by various physical
factors specific to each application, such as sensing distance
and unpredictable wind. Generally, a longer sensing time leads
to better results [30], [31]. Therefore, we define uv as the benefit
obtained by the drone per unit of time spent on task v, and Uv

as the maximum utility that can be achieved. If the total utility
obtained from sensing exceeds the upper bound, it does not result
in any additional benefit. Then, the sensing utility model can be
expressed as:

U
(
hk
v , t

k
v

)
= min

{
uvt

k
vh

k
v , Uv

}
, (1)

where the binary variable hk
v denotes whether task v is selected

by dronek. Thus, the dronek can allocate sensing time to execute
task v only when it has planned to visit this task (i.e., hk

v = 1).
Flight Route: A flight route is composed of a set of sequen-

tially visited task nodes and denoted as:

rk = {vc, . . . , vr} , (2)

where vc is a starting delivery station (i.e., depot) and vr is
a terminal delivery station (i.e., destination). For example, a
route [vc, 3, 2, 5, vr] is a traveling plan that starts at the depot

vc, visits task nodes 3,2, and 5 sequentially, and finally flies to
the destination vr.

Energy Consumption: Typically, the energy consumption of
a drone can be categorized into two primary components: the
energy expenditure during flight and the energy consumption
while hovering. Let Pf (wk) and Ph(wk) denote the powers
of flying and hovering with package weight wk, respectively.
Similar to existing work [35], we consider the impact of delivery
weight on the powers as follows:

Ph (wk) = ρh0 + ρh1wk, (3)

Pf (wk) = ρf0 + ρf1wk, (4)

where ρh0 , ρh1 , ρf0 and ρf1 are the environment-dependent model
parameters. Hence, the mathematical expression representing
the cumulative energy consumption of a given delivery drone k
can be formulated as:

Ek = Pf (wk)
dk
s

+ Ph(wk)
∑
v∈V

tkv (5)

= Pf (wk)
∑
i,j∈V

xk
ijdij

s
+ Ph(wk)

∑
v∈V

tkv , (6)

where dij is the flying distance from task i to task j, and dk is
the total flying distance of drone k. s denotes the flying speed
and xk

ij indicates whether the drone k has taken the route from
task i to task j. Note that the communication energy of drones
only accounts for a little part of the consumption, thus it can be
neglected to some extent.

B. Optimized Objectives

Driven by the demands of urban sensing and delivery en-
terprises, our study embraces two distinct types of decision
variables. The binary decision variable xk

ij ∈ {0, 1} signifies
whether drone k has opted for the route connecting task i and
task j, whereas the continuous decision variable tkv symbolizes
the duration of sensing time dedicated to task v by drone k. For
simplicity, we denote the decision variables as x := {xk

ij}, t :=
{tkv}. Given the available resources and initial states, our target
is to optimize the following two goals:

Goal 1. Maximize the sensing utility: Our primary objective
is to optimize the scheduling of the delivery drone in order to
maximize the overall sensing utility. As definite in (1), we want
to collect sensing data as much as possible without exceeding
the utility upper bound. Since we use the decision variable xk

ij to
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denote whether drone k has been allocated the route connecting
task i and task j, we have hk

v = max{xk
iv}, i ∈ V . This means

that hk
v = 1 only when the routes allocated to drone k involve

task v. Therefore, our first goal can be mathematically expressed
as:

maxU (x, t) = max
∑
k∈K

∑
v∈V

U(hk
v , t

k
v)

= max
∑
k∈K

∑
v∈V

min
{
uvt

k
vh

k
v , Uv

}

= max
∑
k∈K

∑
i,v∈V

min
{
uvt

k
v max

{
xk
iv

}
, Uv

}
.

(7)

Goal 2. Minimize the delivery time: Typically, delivery com-
panies aim to minimize delivery times, as customers prefer their
packages to arrive as quickly as possible [56]. The total delivery
time is composed of the flying time Tf (x, t) and the hovering
time (sensing time) Th(x, t). Therefore, our second goal of the
total delivery time optimization can be given by:

minT (x, t) = min (Tf (x, t) + Th (x, t))

= min
∑
k∈K

⎛
⎝∑

i,j∈V

xk
ijdij

s
+
∑
v∈V

tkv

⎞
⎠ . (8)

C. Problem Formulation

Our objective is to maximize scheduling quality (SQ), which
is defined as a weighted combination of sensing utility and
delivery time. The mathematical formulation of delivery drone
scheduling problem is given as:

max
x,t

SQ = αU ′(x, t)− (1− α)T ′ (x, t) , (9)

s.t. xk
ij ∈ {0, 1}, tkv ≥ 0, ∀i, j, v ∈ V, ∀k ∈ K, (10)∑

k∈K

∑
i∈V,i �=j

xk
ij = 1 ∀j ∈ V, (11)

∑
j∈V

xk
vcj

= 1 ∀k ∈ K, (12)

∑
j∈V

xk
jvr

= 1 ∀k ∈ K, (13)

∑
i∈V,i �=j

xk
ij −

∑
i∈V

xk
ji = 0 ∀j ∈ V, ∀k ∈ K, (14)

Ek ≤ σk ∀k ∈ K, (15)

where α is a trade-off coefficient to adjust the priority of
delivery and sensing, according to the specific requirement.
U ′(x, t) ∈ [0, 1] and T ′(x, t) ∈ [0, 1] are the normalized values
of U(x, t) and T (x, t), respectively. The normalization aims to
make two parts range in a similar order of magnitude. Constraint
(11) guarantees that each task is exclusively assigned to a single
delivery drone. Constraint (12) and Constraint (13) state that

each delivery drone can leave the depot and land at the des-
tination only once, respectively; Constraint (14) enforces that
the numbers of drones coming in and out of a task’s location
are the same; Constraint (15) declares that the energy available
to each drone is limited and cannot exceed its battery capacity
σk. The formulation indicates that, to maximize the objective
of the system, we need both higher sensing delivery utility
and shorter delivery time, without exceeding the limitation of
energy and the number of available drones. Nevertheless, the
decision variables within this problem, encompassing discrete
and continuous types, are intricately intertwined, ultimately
transforming the joint optimization problem into a Mixed Integer
Non-Linear Programming Problem (MINLP).

IV. DDL ARCHITECTURE

In this section, we first show the problem has high computa-
tional complexity. Then, we propose the surrogate function con-
struction to decompose the original problem. Finally, we provide
an overview of our algorithm, which integrates a reinforcement
learning-based method and a learning-free heuristic method.

A. Complexity Analysis

Given the formulation in Section III-C, we can see that the
problem includes two types of optimization. The first one in-
volves the sensing task selection and tour scheduling while the
second one involves sensing time allocation for each selected
task.

Theorem 1: The formulated delivery drone scheduling prob-
lem is NP-hard.

Proof: We prove this theorem by reducing our delivery drone
scheduling problem to a Capacitated Vehicle Routing Problem
(CVRP) [16], which is known to be NP-hard. In CVRP, the
goal is to efficiently distribute goods or services to a set of
customers using a fleet of vehicles, while satisfying capacity
constraints and minimizing transportation costs. Each vehicle
can serve customers as long as their total demand doesn’t exceed
its capacity.

In our delivery drone scheduling problem, we equate the
energy constraint to capacity limitations, with sensing tasks
analogous to customers. Minimizing delivery time corresponds
to minimizing transportation costs. If the energy consumption
for each sensing task were known, our problem would be sim-
plified to CVRP. However, our problem is more intricate due
to uncertainties in energy consumption, arising from practical
factors like flying time, delivery weight, and sensing time (one
of the decision variables). Consequently, we demonstrate the
NP-hardness of our problem. �

Because of this NP-hardness, as the number of sensing tasks
and delivery drones increases, finding the optimal solution be-
comes computationally infeasible. Therefore, our objective lies
in the pursuit of a solution that is near-optimal within a pragmatic
time, as opposed to the relentless pursuit of an exact solution.
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Fig. 3. An illustration of the algorithm. Given the current feasible solution, the algorithm iteratively updates the solution with an upper-level learning-based
method and a lower-level heuristic method. After a certain number of steps, we choose the best one among all visited solutions.

B. Bi-Level Reformulation of Original Problem

We consider the optimization problem with a graph G(V,R),
where V,R are the set of candidate sensing task nodes and
flight routes, respectively. Without loss of generality, the original
problem in (9) can be abstracted as:

max
x,t

f(x, t|G) s.t. h(x, t,G) ≤ 0, (16)

where f(x, t|G) denotes the objective function given the input
graphG,h(x, t,G) ≤ 0 represents the set of constraints, andx, t
indicate the decision variable (i.e., solution).

To ease the challenge of high complexity, we exploit the con-
cept of adapting the original problem to facilitate the problem-
solving process [48]. We propose to gradually improve the
solution quality of this complex problem by solving two levels
of problems alternatively, where fu(x′,G′|G), fl(t′|x′,G′) serve
as objectives for upper and lower level problems, respectively.
Specifically, for the upper-level problem fu(x

′,G′|G), we tar-
get achieving the optimal sensing task assignments and tour
scheduling solution x∗, via transitional modifications from G
to G∗; For the lower-level problem fl(t

′|x′,G′), we aim to
allocate the optimal sensing time t∗ for each selected sensing
task, through constructing a value mapping from x∗ to the
objective function in (9). With this bi-level reformulation, we
start with a feasible solution and optimize these two levels
of problems alternatively, resulting in a continuously refined
solution. Building upon it, we are capable of optimizing the
complex upper-level problem by an DRL agent, while the
lower-level problem with less computation can be solved by a
heuristic algorithm. Overall, the bi-level reformulation allows
DDL to unite the strength of DRL and heuristic algorithms,
leading to improved solution quality and computational effi-
ciency. More details of the algorithm design are elaborated in
Section V.

C. System Overview

Fig. 3 illustrates the hierarchy framework of our algorithm.
The framework is composed of two parts, including a learning-
based RouteCoordinator and a learning-free TimeAllocator for
the upper level and lower level problems, respectively. RouteCo-
ordinator is designed to assign the sensing task and plan the route
simultaneously. TimeAllocator decides the amount of sensing
time allocated to each sensing task, based on the results from
RouteCoordinator.

At a higher level, the framework acts as an intelligent agent
and learns the searching policies based on the Neural Rewriter
architecture [57]. We first construct a feasible solution, then the
algorithm improves the solution iteratively with RouteCoordi-
nator and TimeAllocator. After a certain number of steps, we
choose the visited solution with the best objective value as our
final solution. During the update process, all practical constraints
in Eqs. (11)–(15) remain satisfied. Therefore, with the guarantee
of feasibility, the data-driven characteristic of reinforcement
learning enables the algorithm to explore the large search
space, and potentially learn the searching policies with the best
performance out of data. On the other side, the neural network
replaces some heavy computation via a fast approximation at
the upper level, then the sensing time allocation problem can
be efficiently solved by heuristic at the lower level. The details
of the algorithm components are defined in the next section.

V. ALGORITHM DESIGN

In this section, we describe the algorithm design of DDL.
We first present the design of RouteCoordinator in Section V-B,
followed by descriptions of TimeAllocator in Section V-C and
training details in Section V-D.

Fig. 4 gives an illustration of the algorithm’s decision process.
Given the current state st (i.e., current feasible solution), we
first select a task node using the node-picking policy πω(ωt|st),
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Fig. 4. Illustration of the structure of the proposed algorithm.

where ωt is the selected node. We then pick an edge between
two task nodes using the edge-picking policy πu(ut | st, ωt),
where ut is the selected edge. After rewriting the constructed
routes based on the selected node and selected edge, we obtain
an intermediate state s′t, which can be further optimized by
the learning-free TimeAllocator. Algorithm 1 demonstrates the
main steps when deploying the DDL framework.

1) State Space: In our setting, each solution to the optimization
problem is a state. Considering the practical applications, we
use the position, energy consumption, and utility as contextual
information to construct features for each task node v ∈ V in
the solution. The corresponding features are encoded as a nine-
dimension vector ev and fed into the network. Specifically, the
state features include:
� position states:(xv, yv, x

p
v, y

p
v , Dis), where (xv, yv) de-

notes the node position, (xp
v, y

p
v) represents the position of

the node visited at the last time step, andDis is the distance
between these two nodes. Note that we incorporate Dis as
an auxiliary feature since it provides explicit information
to simplify model understanding and thus speed up the
training process.

� energy states: (μv

σk
, Capk), where μv is the energy con-

sumed by flying from the previous node to the current node
and σk is the battery capacity of the corresponding drone
k. Capk is the remaining energy for the drone k.

� utility states: (Uv

uv
, uv), where Uv represents the utility

upper bound of task v and uv is the utility of task v in unit
time. Thus the first term indicates the maximal amount of
time to allocate.

A. Routecoordinator

1) Action Space: Actions can be classified into two types,
node-picking and edge-picking. The node-picking policy
πω(ωt | st) attempts to predict a score for each task node in
the current solution. This score is a measurement of the benefit
for rewriting each node, and a higher score indicates we could
obtain a higher objective value by rewriting the corresponding
node. Similarly, the edge-picking policy πu(ut | st[ωt]) aims to
predict a score for each edge between the task nodes. As shown

in Fig. 4, based on these two distributions of scores, we could
sample a node (e.g., red circle) and an edge (e.g., red arrow) from
the current solution, and then replace the selected edge with the
connections to the selected node (e.g., blue arrow).

The cooperation of the node-picking policy and the edge-
picking policy allows us to reduce the total flying distance by
modifying the position of arbitrary task nodes intra-route or
inter-route. The inter-route operation represents moving the task
node among different routes, while the intra-route operation
means moving the task node to a different position in an in-
dividual route. Therefore, both the task assignment and route
planning for each drone can be continuously improved.

2) Reward: The reward function focus on the improve-
ment of the objective function compared with the last state.
We can compute the reward for each step as: r(st, ωt, ut) =
SQ(st+1)− SQ(st), where SQ(·) is the objective function
definite in (9). The reward function encourages the algorithm
to move to a neighbor solution that has the largest objective
improvement.

B. TimeAllocator

Assuming the RouteCoordinator has given a good task as-
signment and route planning solution s′t without breaking the
constraints, then the objective function is only related to the
time allocation strategy. Therefore, our mission can be regarded
as finding a mapping from the intermediate state s′t to the sensing
utility.

Given the task assignment result for each route, we rank the
task first according to their utility in decreasing order. Then, we
greedily allocate sensing time for each task, until it reaches the
upper bound or there is no energy left. In other words, we prefer
to allocate more time to the task with higher utility, since we
could achieve a better objective value.

C. Training Details

In the training process, the model aims to maximize the
expected return from each state st. The return is defined as a
total sum of discounted rewards Rt =

∑∞
k=0 γ

krt+k+1, where
γ ∈ (0, 1] is a discount factor. We train the node-picking policy
πω and the edge-picking policy πu simultaneously.



CHEN et al.: DDL: EMPOWERING DELIVERY DRONES WITH LARGE-SCALE URBAN SENSING CAPABILITY 509

Algorithm 1: DDL Algorithm.

Input: Task set V , depot vc, destination vr, utility {uv},
utility upper bound {Uv}

Output: Flight route {R}, time allocation {tkv}
1: for each decision period do
2: Update states: update the state based on the sensing

and delivery tasks information.
3: Route scheduling: assign the task and decide the

visiting order
4: for each route in the route list do
5: Sort tasks: sort the tasks by the utility descending
6: for each task in the current route do
7: Time allocation: greedily allocates sensing time

until it reaches the upper bound or no energy left
8: end for
9: end for

10: end for

For the node-picking policy πω in RouteCoordinator, we use
the following equation to select the node in the current solution
with probability and then rewrite it:

πω (ωt | st; θ) = exp (Q (st, ωt; θ))∑
ωt

exp (Q (st, ωt; θ))
, (17)

where Q is an approximate action-value function with parame-
ters θ. Similar to traditional value-based reinforcement learning
methods, our action-value function is represented using a Multi-
Layer Perceptron (MLP) neural network. The parameter θ of πω

is updated by the following loss function:

Lω(θ) =
1

T

T−1∑
t=0

(
T−1∑
t′=t

γt′−tr (st′ , (ωt′ , ut′))−Q (st, ωt; θ)

)2

,

(18)
where T is the length of the total rewriting steps, and γ is the
discount factor.

For the edge-picking policy πu, we use the advantage-actor-
critic algorithm to update the parameters of the policy net-
work, because the algorithm is capable of handling sample
insufficiency and instability in training. At each iteration, the
edge-picking policy updates the parameter using the following
loss function:

Lu(φ) = −
T−1∑
t=0

Δ(st, (ωt, ut)) log πu (ut |st[ωt];φ) , (19)

Δ(st, (ωt, ut)) =

T−1∑
t′=t

γt′−tr (st′ , (ωt′ , ut′))−Q (st, ωt; θ) ,

(20)

where Δ(st, (ωt, ut)) is the advantage function.
Finally, the total loss function isL = Lu(φ) + λLω(θ), where

λ is a coefficient.

Fig. 5. Heat map of the distribution of delivery stations, as well as examples
of delivery drones and delivery stations.

VI. EVALUATION

In this section, we first introduce the evaluation setup for
experiments in Section 5.1. Then, the details of the evaluation
results and analysis are shown from Section 5.2 to Section 5.4.
In the evaluation, we aim to demonstrate the performance of
DDL in following aspects:

1) We evaluate the performance of our DDL system on the
scheduling quality, scheduling efficiency, and the total
number of drones after scheduling.

2) We validate the effectiveness of our system under the
impact of different key factors.

3) We characterize the system computation cost in run time
compared with the state-of-the-art algorithms under dif-
ferent system settings.

A. Experimental Methodology

Experiment Setup: To evaluate our system, we implemented
a delivery drone simulation environment capable of supporting
more than 300 drones for various experiments. This simulator
incorporates delivery service stations based on a real-world
dataset from 520 stations in Shanghai city. Among these stations,
58 serve as starting points, and 462 serve as terminal points. The
area of interest for evaluation spans 80 km × 80 km, with a
partial representation shown in Fig. 5. The default number of
sensing tasks is set to 20, generated randomly within this area.
The sensing utility weight is uniformly distributed in the range
of [2, 15], with a default upper bound of 2000. Furthermore, the
dataset is divided into training and test sets in an 8:2 ratio.

Each drone starts with an initial energy of 57,000 KJ by de-
fault. The determination of delivery weight and other parameters
in the energy consumption model is based on established re-
search and prior references [58], [59]. Additionally, the discount
factor for the reward is set to γ = 0.8, as determined through an
ablation study.

Experiment Platform: We evaluate our DDL based on the
same hardware configuration, Intel Core i7, 16 G memory,
RTX2080Ti. All the algorithms are implemented in Python.

Metrics: To measure the experimental results, we mainly
focus on the following four metrics:
� Scheduling Quality: Scheduling quality reflects the overall

performances of the algorithm on the sensing objective
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and delivery objective. α is set as 0.5, which means equal
importance between the sensing performance and the de-
livery performance. Therefore, the scheduling quality in
the evaluation is calculated as:

SQ(V,K) = max
x,t

0.5U ′(V,K)− 0.5T ′(V,K). (21)

According to (9), the value ofSQ(V,K) lies in [−0.5, 0.5].
� Scheduling Efficiency: Scheduling efficiency is defined as

the ratio between sensing utility and total energy con-
sumption. It reflects the algorithm’s ability to reduce en-
ergy consumption and improve the sensing performance
simultaneously. Considering the limited battery capacity
of delivery drones, it is vital to improve the scheduling
efficiency ρ, which is described as:

ρ =
U(V,K)

Ek
. (22)

� Run time: We use the run time of all evaluated algorithms
on the same hardware to compare the computation cost.

Baselines: To comprehensively evaluate the performance of
DDL, five baselines are implemented for comparison. RC-Ratio
is a cutting-edge approximation algorithm that solves an MINLP
problem similar to ours with a theoretical guarantee [60]. There-
fore, we implement four baselines derived from this algorithm,
alongside a state-of-the-art reinforcement learning-based algo-
rithm for comparison [61].
� RC-Ratio (RC) [60]: It greedily selects the task node with

the largest RC-ratio (i.e., the ratio of sensing utility increase
to flying distance increase) to construct the travel routes.

� Sensing Utility Greedy (UG): It greedily selects the task
node with the maximal incremental sensing utility to con-
struct the travel routes.

� Scheduling Efficiency Greedy (EG): It always greedily
selects the routes with the maximal scheduling efficiency
(i.e., the ratio of sensing utility increase to energy con-
sumption increase) to construct the travel routes.

� Delivery Time Greedy (TG): It greedily selects the task
node with the minimal incremental delivery time to con-
struct the travel routes.

� HEM [61]: A state-of-the-art hierarchical sequence model
for solving mixed-integer programs via reinforcement
learning.

Note that the baselines RC, UG, EG, and TG adopt the greedy
sensing time allocation strategy and construct the routes with fast
nearest neighbour rule [62].

B. Evaluation on the Overall Performance of DDL

In order to illustrate the overall performance of our DDL and
five baselines, we plot the results on three metrics under the
default settings in Fig. 6. From the comparison, we can make
the following observations.

First, in Fig. 6(a), we can find that the average scheduling
quality of DDL is 0.153, which shows obvious improvement
compared with all baselines. Specifically, the average scheduling
quality is improved by 46% and 90%, compared with RC and
TG, respectively. To illustrate the practical meaning of schedul-
ing quality, we take an improvement of 0.01 in scheduling

Fig. 6. Overall Performance of DDL. (a) Scheduling Quality. (b) Scheduling
Efficiency.

Fig. 7. Performance evaluations of DDL in terms of the number of tasks on
two metrics. (a) Impact of the number of tasks on scheduling quality. (b) Impact
of the number of tasks on scheduling efficiency.

quality as an example. Recall the definition of scheduling quality,
which is a weighted sum of the normalized sensing utility and
normalized delivery time. Therefore, an improvement of 0.01 in
scheduling quality indicates an increase of 800 in sensing utility
or a decrease of 224 seconds in delivery time. This validates
our idea that combining the strength of DRL and heuristic can
help gather more sensing information while spending less extra
delivery time. The improvement comes from our algorithm’s
ability to assign sensing tasks for delivery drones and plan flight
routes from a holistic perspective.

Second, for the average scheduling efficiency, DDL sig-
nificantly obtains the best overall performance, as shown in
Fig. 6(b). Specifically, DDL improves the scheduling efficiency
by 30%, 64%, 39%, 59%, and 42%, over RC, UG, EG, TG, and
HEM, respectively. This shows that DDL has learned the ability
to balance energy consumption and sensing utility, which at-
tributes to the integration of reinforcement learning and heuristic
method.

C. System Robustness Evaluation

1) Effect the Number of Tasks: We show the impact of the
number of tasks on scheduling quality, scheduling efficiency,
and route number in Fig. 7. We changed the number of tasks from
15 to 40 with a step size of 5, while leaving other parameters
unchanged with their default values. From Fig. 7(a), we can see
that DDL consistently outperforms all five baselines in terms of
scheduling quality. For example, when the number of tasks is
40, DDL achieves a scheduling quality of 0.10, compared to RC
given the best line, with a 37% improvement. Besides, for all
approaches, the scheduling quality improves as the number of
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Fig. 8. Performance evaluations of DDL in terms of energy capacity on two
metrics. (a) Impact of energy capacity on scheduling quality. (b) Impact of energy
capacity on scheduling efficiency.

tasks increases. This is because the delivery drones are able to
perform more sensing tasks, which enhances their total sensing
utility. Increasing the number of sensing tasks reveals that there
is a larger search space for scheduling the delivery routes,
and selecting the tasks with manually designed rules for each
delivery route tends to significantly increase the delivery time.
Therefore, the baselines fail to balance the trade-off between
delivery time and sensing utility. In contrast, the incorporation of
the DRL successfully guides our algorithm to assign an adequate
number of sensing tasks for each delivery drone, which helps the
algorithm to obtain more sensing utility in scheduling.

The effects of task number on scheduling efficiency are also
investigated as shown in Fig. 7(b). While the scheduling ef-
ficiency of DDL keeps improving with the increase of sensing
tasks, this metric of other baselines decreases instead. Recall the
definition of scheduling efficiency, which is the ratio of sensing
utility and energy consumption. Since UG and TG focus more
on a single metric, their performance on scheduling efficiency
is not satisfactory enough. RC and EG perform slightly better
than other baselines, because they rely on more indicators when
it comes to decision of the search direction. Without effectively
modeling the cooperation between different routes, these base-
lines schedule the delivery drones with a considerable increase in
flying time, which lead to large energy consumption. When the
extension in delivery time exceeds the improvement of sensing
utility, the scheduling efficiency decreases significantly. It is no-
ticed that our DDL outperforms all baselines with variant num-
bers of tasks, which shows the obvious advantage of our design.

2) Effect of the Energy Capacity: Fig. 8 shows the impact
of the energy capacity for delivery drones. We vary the energy
capacity from 40,000KJ to 75,000KJ with a step of 5,000KJ .
From Fig. 8(a)–(c), we can make the following observations.

Fig. 8(a) illustrates that DDL outperforms all five baselines
in terms of scheduling quality. For example, DDL reaches a
scheduling quality of 0.21 when the energy capacity is 75,000
KJ , beating the best baseline EG by 24%, whose scheduling
quality is just 0.16. On average, DDL outperforms RC, UG,
EG, TG, and HEM methods by 17%, 270%, 18%, 127%, and
138% in terms of scheduling quality, respectively. Besides, a
large energy capacity leads to high scheduling quality for most
of the methods at the beginning, but when the energy capacity
reaches more than 70,000 KJ , we discover that the impact on
scheduling quality gradually diminishes. This may be explained
by the fact that with the growth of energy capacity, the delivery

Fig. 9. Performance evaluations of DDL in terms of the area size on two
metrics. (a) Impact of the area size on scheduling quality. (b) Impact of the area
size on scheduling efficiency.

drones have more remaining energy to hover and collect sensing
data. However, when the energy capacity exceeds a threshold,
all the sensing tasks are completed (i.e., the task utilities reach
their upper bound), thus the scheduling quality plateaus.

From Fig. 8(b), we see that the scheduling efficiency of DDL
increases monotonically as the energy capacity grows. DDL
shows consistent advantage of scheduling efficiency with variant
energy capacities of delivery drones. Especially, DDL achieves
up to a scheduling efficiency of 0.12 when the energy capacity
is 55, 000KJ , which is 29% higher than the best baseline RC.
The comparison also indicates that DDL captures the general
structure of this NP-hard combinatorial optimization problem,
which enabled it to consistently assign the most appropriate
number of drones to perform the task.

3) Effect of the Area Size: Next, we show the impact of
area size in Fig. 9. We consider the situations that the ser-
vice stations occupy a size of area from 2.7 km× 2.7 km to
3.3 km× 3.3 km. The primary observations are summarized as
follows.

Fig. 9(a) reveals how the area size affects the scheduling qual-
ity of different methods. First, From Fig. 9(a), we can observe
that DDL exceeds the performance of all competing baselines in
the terms of scheduling quality. Especially, when the area size
is 2.7 km× 2.7 km, DDL reaches the best scheduling quality.
Second, it is noticed that all methods show a decline in schedul-
ing quality with the growth of area size. The reason behind this
phenomenon is that the larger area will lead to a longer flying
distance, which indicates the delivery time increase. However,
even in these cases, DDL outperforms all the baseline approaches
by more than 14% percent in terms of scheduling quality. Since
the sensing tasks are assigned to several delivery drones, a larger
area size implies a smaller number of tasks in the unit area in
average. Therefore, to improve the scheduling efficiency, it is
significant to determine the number of tasks to execute with the
consideration of the area size.

Fig. 9(b) depicts the scheduling efficiency of all methods
when varying the area size. The scheduling efficiency trend of
all methods is similar to the scheduling quality in Fig. 9(a). This
is due to the same reason mentioned in the previous paragraph.
By utilizing the coordination between the delivery drones to
optimize the routing scheme, DDL beats the best baseline RC
in terms of both scheduling quality and scheduling efficiency.
This comparison result again validates the effectiveness of the
combination of DRL and the heuristic method.
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Fig. 10. Performance evaluations of DDL in terms of the sensing utility
upper bound on three metrics. (a) Impact of the sensing utility upper bound on
scheduling quality. (b) Impact of the sensing utility upper bound on scheduling
efficiency.

4) Effect of the Task Utility Upper Bound: We present the
impact of the sensing utility upper bound in Fig. 10. The sensing
utility upper bound is changed from 1,700 to 2,300. We can make
the following observations from the experimental results.

The effects of sensing utility upper bound on scheduling qual-
ity are investigated as shown in Fig. 10(a). First, comparing the
scheduling quality of different methods, we see that DDL con-
sistently shows better performance than baselines. This proves
that our algorithm effectively allocates reasonable sensing time
for the tasks that bring higher sensing utility. Second, with a
higher sensing utility upper bound, the scheduling quality of
all methods increases. This is because the increase in sensing
utility upper bound allows the drones to allocate more sensing
time to collect sensor data, which results in total sensing utility
improvement.

Fig. 10(b) displays that the scheduling efficiency of DDL
and baselines rise with the increase in sensing utility upper
bound. Each delivery drone aims to collect as much data as
possible when the constraints remain satisfied. As a result, the
total sensing utility rises and the scheduling efficiency naturally
rises. We can see that DDL always has the highest schedul-
ing efficiency while comparing different sensing utility upper
bound. For example, when the sensing utility upper bound is
2000, DDL’s scheduling efficiency is 0.12, which is 29.7% and
39.4% higher than RC and EG, respectively. The reason behind
this trend may be that DDL captures the relationship between
sensing utility and energy consumption, thus it can complete
tasks with less energy consumption.

D. System Micro-Benchmark

1) Impact of Coefficients in the Objective Function: In order
to check how the model coefficient α in (9) affect the perfor-
mance, we plot α with variant values in Fig. 11. The value
α is set from 0 to 1 with a step of 0.1. Note that since α
indicates the trade-off between the sensing performance and
delivery performance, it could be adjusted according to the
practical requirements. As shown in Fig. 11(a), the weighted
sensing utility consistently increases with the increase of the α
value, while the weighted delivery time keeps decreasing. This
is because that larger α value biases the model to focus more
on the sensing utility, thereby the penalty for delivery time de-
creases. Meanwhile, we discovered an interesting phenomenon
in Fig. 11(b) that as theα value rises from 0.5 to 1, the scheduling
efficiency begins to degrade. This implies that a suitable model

coefficient of DDL will contribute to the overall performance.
When we assign equal importance to the dual objectives, the
scheduling efficiency is more close to the optimum. In summary,
the evaluation result shows that DDL could respond correctly to
the parameter settings in the objective function.

2) Computational Efficiency: In order to assess the computa-
tional efficiency and benefits of implementing the reinforcement
learning algorithm, we compare the average runtime (using a
logarithmic scale) for the scheduling decision process depicted
in Fig. 12. We mainly focus on the run time under different
numbers of tasks, because the combination choices of decision
variables grow exponentially with the number of tasks grows,
which incurs a significant increase in computational complexity.
Other parameters are set by default. Note that in adherence to
preceding studies, the RC, UG, EG, and TG baselines have
all been implemented on a CPU. Additionally, our DDL and
the novel HEM baseline, designed employing deep learning
techniques, have been executed on a GPU. We can see that
when the number of tasks is less than 30, all baselines have
a stable performance in terms of run time. However, as the
number of tasks increases, the run time of EG and RC increases
dramatically. Especially, when the task number is 60, the run
time of EG reaches about 100 seconds, which is nearly 100 times
longer than DDL on average. The reason behind is that both EG
and RC rely on the fast nearest neighbour rule [62] to construct
flight routes, and the computation complexity can be expressed
as O(R · r(n)2), where R is the number of drones and r(n) is
the number of tasks on route r, respectively. On the contrary, the
computation complexity of constructing routes in DDL isO(T ),
whereT is the maximal number of rewriting steps. Overall, DDL
shows advantages in run time over all baselines when dealing
with a large-scale problem.

VII. CONCLUSION AND DISCUSSION

A. Conclusion

In this paper, we investigate how to perform urban sens-
ing with delivery drones with the practical constraints. We
first propose a delivery drone-based sensing system DDL and
formulate a mixed-integer non-linear programming problem
(MINLP) that jointly optimizes the sensing utility and delivery
time. Then an efficient solution is presented which integrates:
(1) a DRL model that guides the task assignment and route
planning of delivery drones; (2) a heuristic model to allocate
sensing time for sensing tasks. This approach disentangles the
intricacies of the optimization search process and substitutes
direct computation with rapid approximations. Evaluation re-
sults show that DDL improves the scheduling quality by at least
46% on average, compared with the state-of-the-art baselines.
Furthermore, our proposed method could effectively improve the
computational efficiency, which is up to 98 times higher than the
best baseline.

B. Discussion

We discuss the potential improvements that can be explored
as future research directions.
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Fig. 11. Performance evaluations of DDL in terms of α.

Fig. 12. Approximate run time of DDL and baselines.

Multiple Destinations: DDL currently does not account for
multiple destinations in a delivery team. In a typical drone
delivery system, multiple delivery teams (DTs) collaborate to
cover an area. Each drone in a DT maintains a fixed destination
throughout its operational period. Therefore, our assumption of
a unique destination for each drone aligns with the design and
operation of these delivery systems. If considering a solution for
the entire delivery system with multiple destinations, we suggest
applying our DDL algorithm separately for each individual DT.

Dynamic Environment Adaptation: Currently, our DDL sys-
tem requires advance provision of sensing tasks due to govern-
ment regulations regarding flying area management. In practice,
multiple airlines share the aerial area, necessitating pre-approved
drone flight routes according to strict regulations and protocols.
Consequently, real-time online planning for drone delivery op-
erations faces feasibility constraints. Nevertheless, our system
can be easily modified to support online scheduling of delivery
drones, akin to the Job Scheduling Problem (JSP). Existing
research has explored DRL algorithm designs for JSP [63],
which could potentially inform the development of an online
algorithm for our delivery drone system.
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