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Abstract—Fine grained indoor localization is attractive for
its wide usage in indoor navigation system, infrastructure man-
agement, and blooming augmented reality applications. In this
paper, we propose a smartphone based indoor localization system
called Plotter, providing a centimeter-grade localization service
without any prior knowledge or additional devices. Leveraging
the simultaneous localization and mapping (SLAM) technology,
Plotter not only learns its relative position among surroundings,
but also simultaneously constructs and updates the map of
unknown area. We take advantage of a modified Kalman Filter
algorithm in the system in order to eliminate unacceptable errors
produced by motion sensors on smartphones. Evaluation result
shows that Plotter achieves centimeter-grade accuracy, which is
competitive comparing with prior works assisted by additional
devices.
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I. INTRODUCTION

Accurate indoor localization is becoming increasingly at-
tractive and important in pervasive computing technology
nowadays. In applications like indoor navigation, motion sens-
ing games, and human computer interaction, position informa-
tion is one of the most essential concerns. In recent years,
high accuracy positioning can be achieved by a bunch of
fingerprinting based or model based localization approaches
introduced by thousands of researchers. Innovative approaches
have been constantly raising the bar. However, when trying
to find a low cost and accurate localization system for real
deployment, we find the choices are quite limited.

Generally speaking, fingerprinting based approaches re-
quire huge amount of manual work to collect fingerprints at
every point of interest, and it is also required to store the fin-
gerprints in the database. In recent years, approaches have been
weakening these requirements. Recent works usually start with
only a few known fingerprints. Then the systems constantly
expand the scope of recognition, even though, in this process,
they may sacrifice some flexibility when facing environmental
changes and some user privacy. Nevertheless, manual work
for initiation is still indispensable. In model based approaches,
Angle of Arrival (AoA), Time of Arrival (ToA), and geometric
constraint are widely used. Compared to the aforementioned
fingerprinting based approaches, model based approaches have
gained higher precision. One of the best [1] achieved a sub-
centimeter-grade accuracy. Although fingerprinting based and
model based approaches are mainstreams in research, addi-
tional devices are needed in both approaches, such as Wi-
Fi routers, cellular base stations, or even Universal Software
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Fig. 1. Smartphone gets everything to localize itself like human being–camera
(eye) and motion sensors (cochlea). Sensors use phone coordinate, rather than
ENU coordinate.

Radio Peripheral (USRP). Because of the expensiveness of
those devices and harsh operating conditions, available area is
usually limited. Most of the systems must be deployed limited
in office buildings or laboratories. They will fail to work in
mountainous areas without GPS or other RF signals. They will
also fail when no auxiliary devices equipped.

In this paper, we propose an independent (of additional
devices) and accurate localization system – Plotter, employing
the idea of SLAM technology. The idea is quite simple. Take
ourselves as an example, we, as mankind, were born to localize
ourselves among surroundings. The reason is that we have
our sensory system built up with optesthesia (visual sense),
equilibrium (balance sense), etc. Optesthesia lets us know
which direction the reference objects, like a building, a car,
a door, and a corner of a wall, are in. Equilibrium tells us
whether we are slant or accelerated. When we were babies, by
crawling on the ground with turning heads around, we were
able to recognize how wide those doors were, where those
walls located, and how tall those buildings were constructed,
combining both visual sense and balance sense. Though it is
possible to determine the directions when our eyes are covered,
we rely on our eyes more often, because optesthesia is much
more precise than equilibrium. Now consider the elements
in smartphones: after substituting the main characters of this
scenario with cameras (for optesthesia) and motion sensors
(for equilibrium), as shown in Fig. 1, we can reveal the full
view of the Plotter system. Plotter makes use of its imprecise
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motion sensor for distance estimation roughly. Then the camera
together with this moving distance are used together to localize
some key points, such as corners, roughly again. For example,
when we move left, noticing a key point moving fast from left
to right in our visual field, we consequently know that it is
getting closer to us, and vice versa. Camera and motion sensors
compensate for each other and correct each other to form a
group of accurate key points in the beginning of localization
process. Later, it mainly uses visual based positioning approach
for localization.

Our main contributions are summarized as follows:

• Plotter is a localization system without relying on
additional devices or prior knowledge.

• Besides, it achieves a centimeter-level precision,
which is comparable to the best-performance prior
works assisted by additional devices.

• It keeps track of its location, while simultaneously
updates and records ambient key points, i.e. a map
of surroundings.

• Plotter is a standalone application without any network
communication, which affords good privacy protec-
tion.

• We developed our experimental system on COTS de-
vice, a smartphone with 1.5GHz CPU and 1G memory.
In evaluation section, this device is proved to be
capable of executing this method. There is no need
for high computing performance or large memory
capacity in Plotter system.

In the following sections, we briefly review related works
mainly on indoor localization and SLAM technologies in
Section II, and present a global view on our system and
basic localization methodology in Section III. We introduce
our algorithm specifically in Section IV. In Section V, we
demonstrate our experiments for evaluation, and show the
attractive result of it. Finally, there is a simple conclusion in
Section VI.

II. RELATED WORK

A. Indoor Localization

Localization information [2], [3], [4] for indoor environ-
ments has become increasingly important as with the grow-
ing amount of indoor guidance applications, motion sensing
games, and mobile social networks, etc. There are two research
directions in the mainstream of non-visual approaches: one is
fingerprinting based localization, and the other is model based
localization [5].

Based on the idea that the most possible position is
where the RF fingerprint matches the best, a large amount
of fingerprinting based approaches were brought up. Since
Bahl [6] introduced this system RADAR, precision has been
increased gradually up to 0.225m in Jiang’s work [7] by
using a dynamic-circle-expanding mechanism. One of the
most significant weakness is that they all require considerable
manual work to gather fingerprints in every room or every
place of interest to build a fingerprint database.

Instead, model based mechanisms are the other group of
more accurace approaches. In their theories, locations are
calculated instead of searching in a known database. They
leverage ToA [8], Time Difference of Arrival (TDoA) [9],
or AoA [10] to locate a point based on geometric con-
straints. Model based approaches are much more precise than
fingerprinting based approaches, providing centimeter-grade
positioning accuracy. But indispensable multi-antenna array
and expensiveness of devices become a highlighted drawback
of those methods, no matter how precise they are.

B. Simultaneous Localization and Mapping

Introduced for over 50 years, the idea using one single
camera for localization is not a new term. Simultaneous
localization and mapping (SLAM) technologies are mainly
based on a monocular camera and some sensing devices,
aiming at constructing and updating the map of unknown as
well as localizing the agent device. Though this seems to
be a chicken-and-egg problem, the effort of Leonard et al.
introducing Kalman filtering into this field [11] made SLAM
work, and as a result, Kalman filtering based solutions have
become the main research direction.

Many researchers have been working on it, and generated
lots of excellent results, such as wheelchair robot based on
RGB-D sensor [12], indoor navigation robot made by Wieser et
al. [13], iSAM system using multi-session visual mapping [14],
etc. To the best of our knowledge, current SLAM systems are
all based on high accuracy sensors, like infrared distancer or
ultrasonic detector, which of course raise the bar of hardware
requirements.

III. OVERVIEW

Plotter system leverages the SLAM technique when local-
izing itself and recognizing surroundings. The main differ-
ence between Plotter and traditional SLAM systems is that
Plotter makes use of low-end motion sensors in smartphones,
including accelerometer and orientation sensor, instead of high
accuracy sensors like laser rangefinders or ultrasonic rangefind-
ers used by traditional SLAM system. It consequently suffers
much higher errors compared to other SLAM systems when
performing Kalman filtering algorithm. Besides, in general,
SLAM is often used in the field of robot navigation, which
outputs a floor plan when the robot is moving, while in
plotter, we propose a 3D indoor localization service with
higher accuracy and shall be utilized in AR/VR applications.

We first propose two localization methodologies in this
section, and then bring the architecture up based on these
methods. Note that for better understanding, methodologies
in this section are illustrated in ideal conditions without
measuring error unless explicitly specified. Bold mathematical

TABLE I. MEANING OF RAW DATA PRODUCED BY SENSORS

Linear

Accelerometer

(excluding gravity)

a′
x Acceleration force along the x’-axis.

a′
y Acceleration force along the y’-axis.

a′
z Acceleration force along the z’-axis.

Orientation

Sensor

γ1 Azimuth (angle around the z’-axis).

γ2 Pitch (angle around the x’-axis).

γ3 Roll (angle around the y’-axis).
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Fig. 2. Sight lines from two positions will intersect at key point, and vice
versa, sight lines from two key points will intersect at lens.

symbol denotes a vector, and the symbol with a apostrophe
means it is defined in phone coordinate, which is defined later.

A. Localization Methodologies

Prediction Model: Without any prior knowledge, Plotter
provides only relative localization in a earth-fixed coordinate
system or so called Earth North Up (ENU) coordinate system.
The localization result is related to the position where this
application starts. Against with ENU, smartphone utilizes its
own coordinate as is shown in Fig. 1, which smartphone
sensors mainly rely on. Briefly, when the device is held
facing the screen, the x′-axis is horizontal and points to the
right, the y′-axis is vertical and points up, and the z′-axis
points toward the outside of the screen face. We make use of
two sensors in our system, linear accelerometer and direction
sensor, to develop our system on Android OS. Table I shows
the meaning of values produced by each sensor. In Plotter, all
computational works are based on ENU coordinate, so it is
necessary to convert phone coordinate into ENU coordinate.
Leveraging orientation sensor data, we can get the unit vector
of (x′, y′, z′)T under ENU coordinate system by Equation
1. We use p1, p2, p3 to denote projection vectors of each
direction in phone coordinate:(

x′
y′
z′

)
=

(
p1

p2

p3

)(
x
y
z

)
. (1)

Let o = (γ1, γ2, γ3)
T be the orientation sensor values on

three directions ,and now introduce an intermediate variable τ
as,

τ = arccos (− tan γ2 · tan γ3),
projection vectors can be expressed as the following three
equations:

p1 =

⎛
⎝

− cos γ3 · sin (γ1 + τ)
− cos γ3 · cos (γ1 + τ)

− sin γ3

⎞
⎠

T

p2 =

⎛
⎝

− cos γ2 · sin γ1
− cos γ2 · cos γ1

sin γ2

⎞
⎠

T

p3 = p1 × p2

Camera films at a constant speed, such as 15fps. During
the interval between two frames, sensors produce a series of
data – accelerations a′

i, orientations oi, and time duration

between each data δti . When sensors sample data at their
highest frequency, which is about 26Hz, the time duration
between two groups of sensored data is very short. Therefore,
we assume the phone moves with a constant acceleration in
each time slot. The cumulated speed v and displacement S
are given by:

vi =
∑

j=1...i

a′
j ·

(
p1

p2

p3

)−1

· δtj + v0 (2)

S =
∑
i

vi · δti +
∑
i

a′
i ·

(
p1

p2

p3

)−1

· δ
2
ti

2
(3)

By accumulating speed and displacement, Plotter is able to run
the simplest localization. However, error in this model is not
only huge, but also accumulates fast. As shown in Section V,
it grows to 10m in only 40s.

Observation Model: The second localization methodology
is based on computer vision and geometric constraints, which
is much more accurate than acceleration accumulation in
prediction model. When two lines in the space intersect at one
point, this point is determined uniquely. Moreover, when given
one point and one unit vector, a unique line is determined. As
shown in Fig. 2, the phone moves from P1 to P2. Two sight
lines l1 and l2, which is from the camera to the key point,
together with displacement S make a triangle. Let (xj , yj)
be the key point’s image location on the screen, where xj is
pixels from left bound and yj is pixels from the top bound,
and the camera is at position Pj (j = 1, 2). Then the sight
line vectors in phone coordinate is:

u′
j = (

pw
2

− xj , yj − ph
2
,

pw
2 · tan θw/2),

where pw and ph are max horizontal and vertical resolution
of lens, θw is the horizontal lens angle as shown in Fig. 1.
Additionally, define δ′lens in phone coordinate as the relative
position from the lens to the center of the phone. Then line lj
passes through the point c′j = P ′

j+δ′lens with the direction u′
j .

Since it is a relative position, we simply define P1 as (0, 0, 0),
so that P2 = S. So far, we get two lines l1 and l2 intersecting
at the key point. However, in real cases, due to measuring
errors, l1 and l2 will not intersect all the time. Fortunately,
they are quite close and seem to intersect at one point, despite
they stagger a very small distance. To keep things simple, we
define their intersection in real situation as the middle point
of their common perpendicular, as shown in Fig. 2.

Vice versa, if we are tracking two key points at the same
time, the camera or the lens is at the intersection of two sight
lines connecting lens and key points. Although this initially
appears to be a chicken-and-egg problem, there are several
algorithms known to solve it. To be introduced in the following
parts, Kalman filtering is one of the most popular approximate
solution methods.

B. System Architecture

In this section, we present the overall view of Plotter,
as is shown in Fig. 3. The working process of Plotter is a
cycle containing data collection, Kalman filtering, output and
storage.
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Fig. 3. Plotter architecture

The system starts with a configuration database, storing
basic parameters of different smartphone models, including
δ′lens and θw we mentioned in last section. During localization
process, these parameters are indispensable. The collected data
are separated into two parts, corresponding to two models
working in Kalman filter – prediction model and observation
model. In prediction model, we use direction sensor and
linear-accelerometer data to calculate position and posture.
Meanwhile, observation model corrects localization error by
using camera and tracked key points. Afterwards, the system
provides an estimated position of phone for output, and posi-
tions of some new key points for storage which will be used
in the following iterations.

IV. PROPOSED ALGORITHM

We propose a centimeter-grade indoor localization algo-
rithm in Plotter system based on motion sensors and camera
on smartphone in this section. The main goal of this algorithm
is to maximally avoid being affected by large error in sensor
data. We apply Kalman filter in the first part, which is a very
popular tool when solving SLAM problems. Later, we bring
up a method to help Kalman filter eliminate noise interference,
which is proved to be effective in the following evaluation
section.

A. Traditional Kalman Filter

Kalman filtering has been playing an increasingly impor-
tant role in computer vision, despite its 50-year history after R.
E. Kalman proposed this theory. Kalman filtering is an algo-
rithm that operates recursively on streams of noisy input data
to produce a statistically optimal estimate of the underlying
system state. In Plotter’s scenario, we use Kalman filtering
to get localization information from continuously received
images, accelerometer data, and direction sensor values.

In general, we keep track of smartphone’s position and
speed, as well as k (k ≥ 2) positions of key points in 3D
space together as the state x. In prediction model, state at
time t can be inferred by the state at the previous time xt−1
and current accelerations at,

x̂−
t =

⎛
⎜⎜⎜⎜⎝

pt

vt

K1t

...
Kkt

⎞
⎟⎟⎟⎟⎠

=

⎛
⎝

1 δt 0
0 1 0
0 0 Ik

⎞
⎠ x̂t−1 +

⎛
⎝ δ2t /2

δt
0

⎞
⎠at

(4)

where pt, vt are position and speed vector of phone at time
t, and Kit is the ith key point’s position at time t. Note that
symbol with hat means it is an estimated value, not the real
one. The bar on the top right corner means this estimated value
is not calibrated by observation model yet. We denote the first
matrix on the right side in Equation (4) as F , and the second
one as B habitually.

In prediction model, error covariance matrix Pt is slightly
changing from time t − 1 due to the effect of Equation (4).
Prediction model itself also brings error to Pt. Equation (5)
describes this relation, where Q is the error covariance matrix
caused by prediction model. Seen from Equation (1), we can
get initial error covariance P0 by converting metadata from
sensor, whose orientation and acceleration on each direction
are treated as irrelevant and can be measured or found in
hardware parameter handbooks. Q is simply defined as a
diagonal matrix, with large variance on the 2 top left elements,
like 1; and small variance on the k bottom right elements, like
0.01, because key points are fixed while smartphone is moving.

P−
t = FP−

t−1F
T +Q (5)

In observation model, we take advantage of computer vision
to get an observation of both phone position and key point
positions. The observation state at time t,

zt = (1, 0, 1, · · · , 1)Txt + v, (6)

where v is observation error. We mark the observation matrix
on the right side in Equation (6) as H = (1, 0, 1, · · · , 1)
and define R as observation error covariance matrix brought
by observation model.

The next step is to get a best estimate value of state x̂t,
which is a linear combination of an a-priori estimate x̂−

t and
an actual measurement zt as shown in Equation (7).

x̂t = x̂−
t +Kt(zt −Hx̂−

t ), (7)

where Kt is Kalman gain that minimizes the a-posteriori error
covariance Pt:

Kt = P−
t HT(HP−

t HT +R)−1. (8)

At last, we update the a-posteriori error covariance estimate
via Equation (9)

Pt = (I −KtH)P−
t . (9)

After each pair of prediction and observation process, Equation
(4)-(9) make up the main cycle of Kalman filtering. We try to
simulate a series of smartphone movement in ideal sensing
environment, Kalman filtering obtained a good result, but
failed in practical tests due to heavy noise.

In the following part, we introduce low-pass filter to resist
such heavy noise. Low-pass filter removes high frequency
noise in raw sensor values and provides a better dynamic
estimate of error covariance matrices.

B. Low-pass filtering

The process that a motion sensor producing sensor values
is quite similar to the process that a recorder recording sound.
Taking accelerometer as an example, sensor data can be treated
as samples of mechanical wave, and the accelerometer can be
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treated as a recorder which samples acceleration values at a
fixed frequency. The dash line in Figure 4(b) shows an example
of acceleration on x’-axis when a user slightly wave this phone.
After Fourier transform, acceleration spectrum is shown in
Figure 4(a). This waving motion is a low frequency wave,
with a peak appearing at around 0.5Hz. Other two spectrums
are also shown in this figure, describing two scenarios when
the phone is placed on the table or held in the hand. Seen from
the spectrum, noise of “held in hand” is much larger than the
stable one on the table in the low frequency part, while nearly
the same in the high frequency part. Therefore, we assume
that such noise appears in low frequency is mainly caused by
slight shaking of hands.

When using Plotter system, user moves around, seeing
through the screen. They won’t make high-frequency vibration
or high-speed movement during such process, because of the
application scenario and human body physiology limitation.
For a better understanding of how high the shaking frequency
can be and how large the acceleration can reach, we tracked
5 students’ moving parameters for over one minutes in our
laboratory. Over 95.7% percent of accelerations are lower than
0.59m/s2, and over 57.2% of spectrum energy is distributed
under 1Hz. So we implement a low-pass filter to process the
sensor data, based on Traditional Kalman Filtering (TKF).
Compared with raw data in Figure 4(b), filtered data is smooth
with less noise.

V. PERFORMANCE EVALUATION

In this section, we conduct simulation tests for well
controlled evaluations, and field tests on overall localization
capability. We mainly focus on two algorithms, traditional
Kalman filtering (TKF) and low-pass filtered Kalman filtering
(LPKF).

A. Simulations

It is difficult to keep a constant acceleration or speed during
field tests, and also hard for us to learn the ground truth. So we
first conduct simulation evaluations with a better knowledge of
environment parameters.

For better presentation, we simulate a rectangular motion
with an acceleration and a deceleration process on each edge.
When phone is at corners, its speed is 0. We employ sensor
errors measured in field tests. The orientation sensor has an
error variance of 0.235, and that of accelerometer is 0.011.
Accelerations in simulation tests are under 0.01m/s2, which
is a very small value even compared to the noise.

Based on these simulation tests, we work out smartphone
and key point localization precision implemented by these
algorithms. Fig. 5(a) shows a result in simulations. The phone
starts from (0, 0, 0), and moves along a 0.22m×0.22m square
trail on x−y plane. Fig. 5(b) describes key points localization
process. At the beginning, because of the slow speed, both
prediction and observation model are not reliable; coordinates
of key point change severely. With the speed increasing,
observation model provides more information when localizing
phone itself and key points. Soon, key points’ localizations
converge to a constant value. Seeing from the result, we get
the most precise coordinates on x-axis and y-axis which the
phone moves on with only few millimeters error, and a poor
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performance on z-axis which is parallel to sight line, even
though error on z-axis is no more than 5cm. From the start to
the time when coordinates are stable, it takes about 50 frames,
i.e. less than 4 seconds if camera films at 15fps.

We conduct 100 groups of 10-second simulation, and Fig.
5(c) shows the cumulative distribution of errors produced by
TKF, LPKF, and naive acceleration accumulation. Compared
with naive method, both approaches in this work achieve much
better results. LPKF performs the best, 90% of its error is under
2.6cm. We also conduct simulations based on linear trail and
circular trail, and achieve desired results.

B. Field Test

We implement Plotter on Sony Xperia 28i smartphone, with
Android 4.0 operating system, and a linear accelerometer and
an orientation sensor embedded. Accelerometer and orientation
sensor provide sampling rate as high as 26Hz and error
variance as is shown in section V-A. On the software side,
we employ OpenCV 2.4.9 on Android SDK for CV analysis,
and packaged Matlab program for data processing. The key
point is defined as the most prominent corners in each frame
and is tracked by using observing optical flow.

We recruit 5 students in our laboratory and let them move
this phone near one fixed position, and return to that position
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at last. For better key point tracking effect, we choose a clean
wall as the background and draw some black dots on it ran-
domly. Four groups of experiment are conducted with different
moving time. Naive acceleration accumulation method is also
implemented as control group. With the growing of moving
time, accumulated error in naive method is increasing at a high
speed, about 3 meters per 10 seconds. Compared with naive
method, LPKF shows an attractive error result around 6cm on
average and 11cm maximally (Fig. 6). Seen from the result,
there is no distinct increasing tendency with time grows.

VI. CONCLUSION

In this paper, we propose a new indoor localization system
on mobile devices taking advantage of the basic idea in SLAM
technology. We employ low-pass filter for raw data processing
in our localization algorithm. Simulation and field test result
indicate that it can provide as precise as centimeter-grade accu-
racy, which is at the same level with other indoor localization
approaches, without other devices or prior knowledge.
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