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Abstract—Multi-UAV systems have shown immense potential
in handling complex tasks in large-scale, dynamic, and cold-
start (i.e., limited prior knowledge) scenarios, such as wildfire
suppression. Due to the dynamic and stochastic environmental
conditions, the scheduling for sensing tasks (i.e., fire monitoring)
and operation tasks (i.e., fire suppression) should be executed
concurrently to enable real-time information collection and timely
intervention of the environment. However, the planning inclina-
tions of sensing and operation tasks are typically inconsistent and
evolve over time, complicating the task of identifying the optimal
strategy for each UAV. To solve this problem, this paper proposes
SOScheduler, a collaborative multi-UAV scheduling framework
for integrated sensing and operation in large-scale and dy-
namic wildfire environments. We introduce a spatio-temporal
confidence-aware assessment model to dynamically and directly
pinpoint locations that can optimally enhance the understanding
of environmental dynamics and operational effectiveness, as well
as a priority graph-instructed scalable scheduler to coordinate
multi-UAV in an efficient manner. Experiments on real multi-
UAV testbeds and large-scale physical feature-based simulations
show that our SOScheduler reduces the fire expansion ratio by
59% and enhances the fire coverage ratio by 190% compared to
state-of-the-art (SOTA) solutions.

I. INTRODUCTION

W ILDFIRES pose a significant threat to human life and
cause devastating destruction of homes, infrastructure,

and wildlife habitats [1]–[4]. For example, the 2020 wild-
fires in California burned over 4 million acres of land and
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Fig. 1. Illustration of scheduling multi-UAV for wildfire suppression. The
server integrates data from all UAVs and sends scheduling commands to UAVs
for fire monitoring and suppression simultaneously.

destroyed thousands of homes, causing billions of dollars in
damages [5]–[7]. What is even worse, wildfires also release
large amounts of carbon dioxide and other pollutants into
the atmosphere, leading to climate change and air quality
deterioration [8], [9]. The long-term effects of wildfires can
lead to soil erosion, loss of biodiversity, and water pollution
[10]. Therefore, quick and effective wildfire suppression is
crucial to protect the health and safety of human beings and
preserve natural ecosystems.

However, conventional fire-fighting methods are not able to
provide quick and effective wildfire suppression to large-scale
and dynamic wildfires due to the following reasons. First, the
mobility of firefighters is insufficient for expansive areas, espe-
cially when hindered by heavy equipment, resulting in a slower
pace than the advancing fire [11], [12]. Second, challenging
terrain often impedes ground access to fire sites, hindering
real-time assessment for effective suppression strategies [13].
Lastly, while manned aircraft offer speed, they are labor-
intensive and high cost which constrain dense deployment for
large-scale firefighting [1].

Fortunately, unmanned aerial vehicle (UAV) shows immense
potential in the complex wildfire scenario [12], [14], [15].
First, UAVs are highly mobile and agile, allowing them timely
access to different areas of large spaces, especially areas
that may be difficult or dangerous for firefighters to reach
[16], [17]. Second, equipped with various sensors such as
high-resolution cameras and thermal imaging equipment, UAV
swarm can capture real-time information such as fire location,
size, shape, and intensity, supporting the identification of
potential hotspots and the allocation of firefighting resources
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[18], [19]. Third, UAVs are cost-effective compared to tradi-
tional manned aircraft, which allows the deployment of multi-
UAV systems for the increasing area and complex tasks.

By fully embracing the new advantages brought by UAVs,
current innovations explore the collaborative scheduling of
multi-UAV for enhancing wildfire management in challenging
scenarios [4], [20]–[27]. These works mainly treat wildfire
monitoring and suppression as two independent entities for
scheduling:
(i) Most research efforts are dedicated solely to scheduling
for wildfire detection or monitoring and mainly aim at max-
imizing fire coverage [23]–[25]. These approaches generally
necessitate a follow-up fire suppression operation based on
gathered information, which often leads to a delayed response
in dynamic situations.
(ii) A few studies explore planning for wildfire suppression
(e.g., dispersing fire retardant) with multiple robots [21], [26],
[27]. These studies, however, typically rely on an accurate,
deterministic environmental model (e.g., an enlarging ellip-
tical perimeter) or they assume complete observation of the
environment. Unfortunately, such ideal conditions are seldom
present in large-scale situations.
(iii) The advanced data-driven methods such as reinforcement
learning (RL) [22] could serve as an all-in-one scheduling
solution. However, these learning-based methods are prone
to major drawbacks such as scalability and domain shift
problems, which hinder the real application in safety-critical
firefighting scenarios [23].

As dynamic environmental conditions, like wind, could
shift the size, position, and shape of the fire unpredictably,
certain areas within the operational environment exhibit unpre-
dictability during specific periods, necessitating re-observation
of these regions when their status is uncertain. Therefore,
the scheduling for wildfire monitoring and suppression tasks
should be executed concurrently – If monitoring is not suf-
ficiently comprehensive, the operation may not be optimally
positioned for effective fire-extinguishing actions. In contrast,
a lack of adequate suppression could potentially cause the fire
dynamics to escalate.
Our Work aims to devise an effective strategy for the collab-
orative scheduling of multiple UAVs to concurrently execute
wildfire monitoring and suppression within large-scale and
dynamic wildfire environments, as shown in Fig. 1. Particu-
larly, we focus on cold-start situations where a limited number
of UAVs, deployed for emergency tasks, typically possess
minimal prior knowledge about the environment. However,
realizing the idea is non-trivial and faces two grand challenges:
• Divergent goals of monitoring and suppression schedul-
ing (C1). Monitoring-oriented scheduling seeks to obtain
comprehensive data to enhance the accuracy of environ-
mental dynamics prediction. In contrast, suppression-oriented
scheduling aims to optimize resource utilization based on
current information. However, the number of UAVs is limited
and their sensing and suppression resources are constrained,
this gives rise to a decision-making challenge. As illustrated
in Fig. 2, sensing-oriented scheduling necessitates the UAV
to explore uncertain regions and gather fresh data about
fires, while suppression-oriented scheduling urges it to move

Fig. 2. Illustration for inconsistent goals and different results of scheduling for
monitoring and suppression. The yellow circle highlights the fire expansion.

toward the currently estimated fire boundary to dispense fire
extinguishing balls. These divergent planning inclinations also
evolve over time, complicating the task of identifying the
optimal strategy for each UAV. Achieving a good tradeoff
demands a meticulous analysis of their relationship and the
quantification of potential gains, a task that poses significant
challenges.
• Spatio-temporal high-dimensional decision space impair
scheduling efficiency (C2). The large-scale property of envi-
ronments intensifies spatial complexity in scheduling decision
space while the dynamic nature, on the other hand, expands the
temporal complexity. Specifically, large-scale environments
necessitate high-resolution spatial data for informed decision-
making. Additionally, the swiftly changing conditions demand
forward-thinking planning, which expands the search space
along the temporal dimension. The involvement of multiple
UAVs further exacerbates this issue, leading to exponen-
tial growth in the already high-dimensional search space.
Collectively, these elements create a spatio-temporal, high-
dimensional combinatorial search space. Given these com-
plexities, finding an optimal policy within a limited time slot
becomes unfeasible.

To tackle the above challenges, we design SOScheduler, a
collaborative multi-UAV scheduling framework for integrated
wildfire monitoring and suppression by proactively evaluating
the wildfire state and adaptively adjusting the collaboration
strategy to track the fire front and perform fire suppression si-
multaneously. SOScheduler can integrate existing probabilistic
modeling of dynamic environments for other disaster events
and further provide efficient and effective emergency response.

To address C1, we introduce a Spatio-temporal Confidence-
aware Assessment method, which incorporates the potential in-
formation decay and quantifies the expected gain of both sens-
ing and suppression action for each location. Subsequently,
both measures are integrated to derive a dual-criteria utility
function to guide the follow-up scheduling. This method not
only breaks away from the assumption of complete observation
of the environment, but also equips UAV with a quantitative
basis that enables them to dynamically and directly pinpoint
locations that can best improve fire estimation quality and fire
suppression performance.

To address C2, we convert the problem of optimal allocation
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into maximal coverage scheduling problem. Consequently, we
devise an efficient Priority Graph-instructed Scalable Schedul-
ing algorithm, which predicts the environment state in the near
future to enable non-myopic planning. We further introduce
the sequential allocation scheme to coordinate multi-UAV
operations, which effectively reduces the planning complexity
from an exponential to a linear scale, while providing a
theoretical guarantee for performance. This method ensures
that the algorithm is computationally lightweight and can run
on resource-constrained edge platforms.

We implement SOScheduler and deploy it on a multi-UAV
prototype system for evaluation. Extensive experiments were
conducted, including a scaled-down (at a ratio of 1:30) lab-
based testbed (15 hours) and large-scale physical feature-
based simulations under varying environmental conditions
(500 runs). Evaluation results reveal that our approach reduces
the fire expansion ratio by an impressive 59% while enhancing
coverage ratio by 190% when compared with the latest RL-
based solutions. Our main contributions are summarized as:

• We design SOScheduler, a multi-UAV collaborative
scheduling framework that integrates wildfire monitoring
and suppression, specifically designed to handle tasks in
large-scale and dynamic environments with limited prior
information.

• We develop a spatio-temporal assessment model that
contributes to improving understanding of environmental
dynamics and enhancing fire suppression effectiveness
simultaneously.

• We devise a scalable, non-myopic algorithm that signif-
icantly reduces the complexity associated with coordi-
nating multiple UAVs in expansive environments while
offering a performance guarantee.

• We validate SOScheduler with comprehensive evaluations
involving a real-world multi-UAV system and large-scale
physical features-based simulations.

The remainder of the paper is organized as follows: We
first present the related work in Section II, followed by
the overview of SOScheduler in Section III. The detailed
descriptions of the key components and algorithms are shown
in Section IV. We further demonstrate the implementation and
evaluation of our framework in Section V. Finally, we discuss
and conclude SOScheduler in Section VI.

II. BACKGROUND AND RELATED WORK

A. Remote sensing in wildfire

Remote sensing has been extensively researched in the
wildfire assistance field as it allows the observation of wildfires
without unnecessarily exposing humans to dangerous activi-
ties. Traditional remote sensing tools consist of two methods:
satellite and wireless sensor networks (WSNs).

Satellite imagery has long been employed for Earth surface
monitoring [28]–[30], offering a broad coverage that aids in
identifying fire risks and detecting active fires across regions.
Despite its utility, this method is hindered by three prominent
limitations. Firstly, the spatial resolution of satellite imagery
poses a constraint. For instance, a single image from a
moderate-resolution satellite, like Landsat, covers an expansive

area (approximately 185 km x 185 km) but with a spatial
resolution of only 30 meters per pixel. This limitation becomes
apparent when attempting to detect small objects or subtle en-
vironmental changes. Secondly, satellites are unable to provide
real-time information. This limitation holds significance be-
cause the time required for a satellite to revisit the same region
introduces instability in continuous monitoring efforts. Real-
time responsiveness is crucial in swiftly changing wildfire
events, where timely information is paramount for effective
response and intervention. Additionally, the ground coverage
provided by satellites is inherently limited. Due to their fixed
orbits, satellites lack maneuverability and flexibility, making
it challenging to monitor rapidly changing wildfire events in
a dynamic and responsive manner. As a result, the reliance
on satellite imagery for timely and detailed environmental
monitoring becomes compromised.

Wireless Sensor Networks (WSN) are proposed for wildfire
monitoring but face significant challenges [31]–[33]. Firstly,
WSN nodes operate on limited battery power, posing sus-
tainability issues in remote areas where battery replacement
or recharging is challenging. This limitation threatens the
operational lifespan of sensors, impacting their reliability in
wildfire-prone regions. Secondly, scalability is a major con-
cern. The static installation of sensors in forests results in
coverage and resolution directly tied to investment, making
deployment costly. Coordinating a large number of sensors
also strains the network, affecting the feasibility of compre-
hensive wildfire monitoring across expansive areas. Addition-
ally, the overall cost of WSN deployment and maintenance
is substantial, encompassing sensor acquisition and network
establishment. Moreover, during a fire event, the vulnerability
of sensors to destruction raises reliability concerns at critical
moments.

In summary, the limitations of traditional methods empha-
size the need for innovative, real-time, and scalable wildfire
monitoring solutions. The rising consideration of UAVs for
wildfire assistance is explored in the next section.

B. UAV-based system in wildfire assistance

1) Goals of UAV-based system: Mitigating the impact of
wildfires involves considering various interconnected factors,
such as meteorology, drought monitoring, and ongoing forest
status assessment. Research in these areas contributes to
proactive wildfire prevention and preparedness. For UAV-based
systems, two critical elements emerge during a wildfire. The
first goal involves real-time monitoring and surveillance of the
wildfire’s status. This timely information empowers firefighters
to anticipate fire behavior and make informed decisions on
resource allocation. The second goal is suppressing the wildfire
before the arrival of firefighters. Due to the rapid and large-
scale nature of wildfires, swift firefighter response is chal-
lenging. Implementing immediate suppression measures, like
dropping firefighting retardant from UAVs, becomes pivotal.
This early intervention can effectively slow or halt the fire’s
spread until firefighters arrive, preventing further escalation,
conserving resources, and reducing the risk to lives.
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2) UAV-based system for wildfire monitoring: The most
common mission in wildfire assistance is wildfire monitoring.
The UAV-based system for wildfire monitoring in the existing
works could be classified into three types: a single agent
for independent planning, a fully distributed method, and
a cooperative method. In [34], a planning algorithm based
on reinforcement learning for a single agent is proposed to
achieve efficient information collection. Casbeer et al. [25]
proposed a distributed system where each agent indepen-
dently performs its path planning, but this can result in the
underutilization of the information collected by multi-agent
systems. Therefore, cooperative systems have attracted more
attention. The system proposed by Haksar et al. [35] involves
two UAVs working as a group to exchange information as
well as path planning at regular intervals, but this work has
limitations as the two interacting UAVs are determined in
advance. Our work differs from the previous work in that
we have constructed a cooperative system in which multiple
UAVs ensemble information periodically to provide real-time
fire status prediction, aiming at supporting the autonomous
suppression mission which is performed concurrently.

3) UAV-based system for wildfire suppression: In contrast
to the wildfire monitoring task, little work has been done on
UAV-based systems for wildfire suppression. Diego et al. [36]
presents an approach for accurately dropping fire retardant
onto a wildfire from UAV in close proximity to the epicenter
of the fire, which validates the effectiveness of autonomous
fire suppression. Haksar et al. [22] proposed a reinforce-
ment learning-based algorithm for fire suppression, but these
learning-based methods are prone to major drawbacks such as
scalability and domain shift problems, which hinder the real
application in safety-critical firefighting scenarios. Lawrence et
al. [37], Phan et al. [20], and John et al. [13] propose multi-
UAV solutions for faster detection and mitigation of forest
fire, but they assume the UAV has complete information about
the environment or adopt over-simplified elliptical wildfire
models.

In summary, our work uniquely focuses on scheduling
multi-UAV to conduct wildfire monitoring and suppression
simultaneously, particularly in cold-start situations where a
limited number of UAVs, deployed for emergency tasks, typi-
cally possess minimal prior knowledge about the environment.
This work can be viewed as a variant of a wireless sensor and
actor network (WSAN) [4], [38], contributing to the growing
paradigm of the Internet of Things (IoT).

III. OVERVIEW

In this work, we seek to schedule a group of UAVs to
concurrently execute wildfire monitoring and suppression in
large-scale and dynamic wildfire environments. In order to
facilitate understanding of the process, we first describe our
modeling and problem formulation, then we detail SOSched-
uler’s architecture.

A. Modeling

1) Environment Model: In order to represent the dynamics
and stochastic characteristics of wildfire, we model it by a

graph-coupled hidden Markov model (GHMM) with proba-
bilistic transition functions [27], in which fire state transition
is expressed by a stochastic process to capture the uncertainty
of fire evolution. Specifically, we consider an environment as a
two-dimensional terrain Z2 that is discretized into a collection
of congruent nc cells, as shown in Fig. 2. The position of each
cell i is represented by pi. Each cell i ∈ Z2 corresponds to
a standard HMM with latent state xt

i ∈ X and observation
yti ∈ Y at time t. In the wildfire scenario, according to [27],
the cell state xt

i is described by one of three discrete values, X
= {healthy/no fire, on fire, burnt}. Note that this abstraction
covers the core characteristic of the wildfire, which is also
widely adopted in other works [26], [39]. For simplicity, we
denoted the cell state as xt

i ∈ {H,F,B} in the following
sections.

Consider the propagation of fire, the transition probabilities
of each cell i are influenced by its neighbor set N (i), which
is defined as a collection of cells that are one unit away in
Manhattan distance:

N (i) =
{
j | ∥pi − pj∥1 = 1

}
. (1)

Therefore, the latent state transition distribution for each cell
can be expressed as:

pi

(
xt
i | xt−1

i , xt−1
N(i)

)
, (2)

where xt
N(i) =

{
xt
j | j ∈ N(i)

}
represents the latent state for

the neighbors of cell i. Note that the objective of this paper is
not to develop a realistic fire wildfire model but to incorporate
the stochastic variability of the fire growth. Any probabilistic
wildfire models that allow for stochastic variability of the
output can be incorporated into our frameworks.

2) UAV Model: We consider a team of UAVs R =
{r1, · · · , rnr

} engaged in the mission. Each UAV has two
kinds of actions: moving action µt

r ∈ U and operation action
atr ∈ {0, 1}, indicating where to go and whether to conduct
fire suppression at time t, respectively. The UAV moves in the
environment and obeys the following dynamic:

ptr = f(pt−1
r , µt

r), (3)

where ptr and µt
r are the position of UAV r and the control

input to the UAV r at time t, respectively.
In the fire suppression scenario, to allow for performing

vision observation and active suppression, we assume the
UAVs are equipped with the following capabilities: 1) Fire
detection: UAVs are equipped with downward-facing vision
sensors such as thermal imaging cameras to provide visual
information about the fire status; 2) Fire suppression: UAVs
are equipped with a limited number of fire extinguishing balls,
and they will drop the balls autonomously (i.e., atr = 1) to
extinguish the fire area directly beneath it when they locate at
fire front; 3) Localization: UAVs use GPS receivers and inertial
measurement units (IMUs) to localize themselves and navigate
to destinations; 4) Communication: UAVs transmit data to
the edge server and receive action control from it by radio;
Based on these capabilities, UAVs are able to collaboratively
localize and navigate themselves above the terrain to search
and suppress the fire area.
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B. Problem Formulation
The primary goal of SOScheduler is to minimize the af-

fected area as much as possible. Therefore, the objective func-
tion could be represented as minimizing a desired suppression
criterion UT (·) over a period of mission time T .

max
µ1:T
1:nr

,a1:T
1:nr

UT (xT
1:nc

), (4)

s.t. bt+1 = h(bt, pt1:nr
, yt1:nr

, at1:nr
), (5)

at1:nr
, µt

1:nr
= g(bt, pt1:nr

), (6)

ptr = f(pt−1
r , µt

r), ∀r ∈ R, (7)
atr ∈ {0, 1}, µt

r ∈ U , xt
i ∈ X , yti ∈ Y, (8)

where a1:T1:nr
and µ1:T

1:nr
represent the actions and moving

control for all UAVs from time 1 to T . The detailed form
of UT (·) for fire suppression is shown in Eq. (20). Eq. (5)
represents that the estimation of the environment state bt+1

at time t + 1 is based on the UAVs’ historical trajectories
and actions from time 1 to t. Eq. (6) states that the action
strategy g(·) at time t is based on the environment state
estimation bt and the UAVs’ position pt1:nr

. Eq. (7) states the
dynamics of UAVs. Notably, h(·) can be implemented based
on the various existing environment models. In this paper,
we focus on designing the scheduling strategy g(·) based on
the environment state estimation, which in turn contributes to
improving fire estimation quality and fire suppression perfor-
mance concurrently.

C. System Architecture
SOScheduler is a collaborative multi-UAV scheduling

framework that aims at proactive and adaptive suppressing
wildfire in a timely manner. As shown in Fig. 3, we detail
its three main modules:
Collaborative Perception & Prediction Model. This compo-
nent takes the measurement of the environment from multiple
collaborative UAVs as input, and then leverages Bayes Filter
to fuse sensing data and estimate the environment state. This
module also allows a prediction step to support the non-
myopic planning of UAVs.
Spatio-temporal Confidence-aware Assessment Model.
This component is the core of SOScheduler, which introduces
a novel utility function to assess the utility of locations based
on the predicted environment state. It begins by estimating the
sensing gain and operation gain for each location using the
predicted environment state. Next, it constructs a confidence
map to integrate the sensing gain and operation gain measures
into a unified utility function.
Priority Graph-instructed Scalable Scheduler. This compo-
nent first constructs a priority graph based on the utility as-
sessment results to facilitate the path search. Next, it provides
a sequential allocation scheme to generate collaborative paths
for multiple UAVs, which efficiently reduces the computation
complexity from exponential to linear.

We describe the workflow of SOScheduler as follows. For
each communication cycle, our algorithm begins with UAVs
receiving the visual sensing data as inputs. After employing
existing fire detection processes (e.g., YOLOX [40]), the iden-
tified fire states are transmitted to the edge server. Following

Fig. 3. System architecture of SOScheduler.

this, Collaborative Perception & Prediction Model integrates
all the collected information to predict the global wildfire
status in the operational environment at the next time step. This
prediction guides Spatio-temporal Confidence-aware Assess-
ment Model in deriving a utility estimation for each location to
prioritize the regions. Finally, Priority Graph-instructed Scal-
able Scheduling generates collaborative scheduling commands
for multiple UAVs, which are dispatched to the UAVs and
executed by their onboard controllers. Notably, the communi-
cation content between UAVs and the edge server consists of
scheduling commands and abstracted fire states (rather than
raw visual sensing data), thus the algorithm only requires
low bandwidth and the optimization of communication latency
falls outside the scope of this work. A summary of the key
procedures at the edge server for the UAVs is presented in
Algorithm 1, and the algorithm workflow is illustrated in
Fig. 4.

Algorithm 1 SOScheduler Algorithm
Input: UAV positions {ptr}, belief of fire status b(xt)

Output: Joint action-moving path ˆPt+T for next time period
{t : t+ T }

1: Collaborative Perception & Prediction: predict the global
fire status b(xt+T ) after T steps based on the gathered
local information from all UAVs

2: Spatio-temporal Confidence-aware Assessment: estimate
the utility u(xt

i) for each cell i based on the predicted fire
status

3: //Priority Graph-instructed Scalable Scheduler
4: for each UAV in the team do
5: Path planning: find the collaborative paths ˆPt+T for

all UAVs based on the estimated utility map
6: end for

IV. SYSTEM DESIGN

A. Collaborative Perception & Prediction Model

The perception module of SOScheduler considers all the
information collected by UAVs and uses data fusion technolo-
gies to estimate the evolution of the wildfire environment. For
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Fig. 4. Algorithm workflow of SOScheduler

each communication cycle, each UAV processes the sensing
data and provides the extracted information to the edge server,
where the joint estimation takes place.

1) Observation Fusion: Due to various factors such as
occlusion and imperfect detection models, noise and errors
are inevitable in measuring the environment status. We con-
sider the overall measurement accuracy with a parameter
0 ≤ Pm ≤ 1, which indicates the probability of detection
results matching the ground truth state of the cells. The specific
value of this parameter hinges on the accuracy of the adopted
fire detection model. Consequently, the measurement model
of cell i observed by UAV r can be mathematically expressed
as:

p[r]
(
yti | xt

i

)
=

{
Pm yti = xt

i
1
2 (1− Pm) yti ̸= xt

i.
(9)

We assume each observation is dependent only on the state of
the corresponding cell, and noise on the observations is uncor-
related between UAVs. The joint measurement probabilities of
the environment are then,

p
(
yt | xt

)
=

nr∏
r=1

nc∏
i=1

p[r]
(
yti | xt

i

)
. (10)

We note that the fusion of multiple observations has been stud-
ied extensively [41], and is not the focus of our contribution
in this work.

2) Fire State Estimation: For the integration of new infor-
mation, we update the environment state estimation according
to the Bayes’ Rule based on the state transition model and
joint measurement model in Eq. (10). Let b(xt) be the belief
that represents the environment state estimation conditioned
on all historical measurements (i.e., bt in Eq. (5)), then this
process can be mathematically expressed as:

b(xt) ∝
n∏

i=1

p
(
yti | xt

i

) ∑
xt−1

b(xt−1)
n∏

i=1

p
(
xt
i | xt−1

i , xt−1
N(i)

)
.

(11)
Typically, we have a priori about the coarse position of the

initial fire (e.g., satellite remote sensing, residents’ alarm), thus
b(x1) can be initialized by setting part of the cells’ state with
higher probabilities on fire.

B. Spatio-temporal Confidence-aware Assessment Model

The wildfire’s stochastic variation across space and time
leads to the fact that UAVs’ collected information about the
environment becomes partially outdated, thus some locations
need to be re-observed when their status become uncertain —
a perpetual spatio-temporal task. Given the limitation in the
number of available UAVs and the expanding nature of the
fire, prioritizing regions that significantly contribute to under-
standing the environment’s dynamics and reducing the time
required to suppress the spreading fire becomes imperative.
Therefore, our assessment model seeks to answer two critical
questions: (i) How to quantify the potential impact of sensing
and operation at each location? (ii) How to mitigate over-
reliance on the employed environment model that typically
may not be entirely accurate?

To answer these questions, we first leverage the fire status
estimation and the mutual information tool to quantify the
potential contribution of each cell to both objectives, denoted
as sensing gain S and operation gain O. We then craft
a location-wise confidence map based on UAVs’ historical
measurements, accounting for the information decay due to a
lack of measurement and breaks down over-dependence on the
environment model. Finally, we combine the gain estimations
with the confidence map into a dual-criterion utility function,
more directly determining the locations where they can best
improve the model quality and operation performance. Overall,
this assessment model not only enables the simultaneous
optimization of both sensing and operation, but also facilitates
policy adjustments at each decision interval according to the
environment dynamics.

1) Sensing Gain Measure: Since we aim to infer the
environment state from the measurements, we are motivated to
schedule the UAVs to locations that maximize the information
collected from the environment. This information can be quan-
tified by Mutual Information (MI), which is an information-
theoretic tool that enables measuring the reduction in expected
uncertainty about the environment given the observations.

As such, the sensing gain by moving to each cell in the
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environment can be represented as the information gain:

S(xt
i) = I(xt

i, y
t
i) = H(xt

i)−H(xt
i | yti)

=
∑
xt
i

∑
yt
i

p(yti | xt
i)b(x

t
i) log

p(xt
i | yti)

b(xt
i)

,

(12)
where H(xt

i) is the entropy of the environment state and
H(xt

i | yti) is the conditional entropy given the new obser-
vation.

2) Operation Gain Measure: Given that the ultimate goal
is to intervene in the dynamic environment process as soon
as possible but the operation resource (i.e., fire extinguishing
balls) is limited, it is required to assess the operation gain of
each location by leveraging the environment state estimation.
In the wildfire scenario, efficient fire suppression necessitates
applying fire retardant directly to the time-varying fire front.
Therefore, areas with estimated fire front positions are as-
signed higher operation gains.

The locations of fire front should be in the estimated
boundary of the burning area. Let κ(xt

i) = argmax b(xt
i) be

the maximum likelihood state of cell xt
i, then we define the

boundary of the fire as:

B(xt) = {i | κ(xt
i) = F ∧ κ(xt

j) = H,∃j ∈ N (i)}. (13)

From these boundary positions, the final fire front σ(xt) is
obtained by considering the cells of the boundary with high
fire probabilities b(xt

i = H) over a given threshold δ. As such,
the operation gain of moving to each cell in the environment
can be denoted as:

O(xt
i) = 1(i ∈ σ(xt)). (14)

3) Confidence Map Update: When we estimate the sensing
and operation gain, some locations are incorporated with in-
field observation in close proximity, while others rely solely
on the environment model’s prediction. Intuitively, the former
one should have a stronger ”confidence” in the predicted gains.
Therefore, we provide a confidence value λ(i, t) for each
target cell i based on two aspects: (i) the spatial distances of
historical observations to cell i, and (ii) the temporal distances
of historical observations to cell i. These two aspects can be
formally combined and defined as:

Ω(i, t) =
n∑

j=1

N ((tnow − tj) |pj − pi| ; 0, σ) , (15)

where tnow is the current time and tj is the time cell j was
last observed. |pj − pi| is the Chebyshev distance between xt

i,
(the cell being updated), and xt

j , (the cell which has been
observed). n indicates the recent w observations and N (·) is
a uni-variate Gaussian function to represent the importance of
observation obtained at pj to estimate the state of the cell at
pi. The kernel size σ is a hyperparameter.

We introduces a confidence map λ(i, t) by normalizing
Ω(i, t) to the interval [0, 1):

λ(i, t) = 1− e−(Ω(i,t))2 . (16)

The confidence map depends on the historical trajectories
of UAVs and the last observed time of each cell. A high

confidence value for a cell means that the estimated gain is
derived from a large number of recent observations in close
proximity to this cell. On the contrary, a low confidence value
suggests that there are few historical observations near this
cell, or this cell was last observed long time ago.

4) Dual-criterion Utility Function: Finally, the overall util-
ity assessment is calculated by integrating the confidence map,
sensing gain, and operation gain into a dual-criterion utility
function as follows:

u(xt
i) =

∑
j∈RS(xt

i)

λ(j, t)O(xt
j)+(1−α)

∑
k∈RO(xt

i)

λ(k, t)S(xt
k),

(17)
where RS(x

t
i) and RO(x

t
i) are the cells in the range of

sensing and suppression when a UAV is located above cell i,
respectively. α is a parameter to adjust the relative influence
of the component objectives.

In this way, when the estimated sensing and suppression
gains of a cell are rooted in a low confidence value λ(i, t),
the overall utility of that cell decreases. The confidence map
can be viewed as a dynamic weight coefficient to adjust the
estimated gains, which mitigates the reliance solely on the
estimation result based on the employed environment model.

C. Priority Graph-instructed Scalable Scheduling

This module aims to generate paths for multiple UAVs based
on the Spatio-temporal Confidence-aware Assessment model.
To address the challenge of spatio-temporal high-dimensional
decision space mentioned in Section I, we proposed a scalable,
heuristic-based algorithm to find an approximate solution with
a performance guarantee. Its core ideas are: 1) Construct a
priority graph based on the utility assessment and utilize a
graph search algorithm to plan the path for each UAV. 2)
Utilize a sequential allocation scheme, where UAVs make
decisions sequentially conditioned on all the paths that have
been selected, to coordinate multiple UAVs. This approach
reduces the planning complexity from exponential to linear,
enabling efficient and non-myopic path planning for multiple
UAVs in dynamic environments.

1) Prioriy Graph Construction: The optimal scheduling
requires the perfect knowledge of the future environment state.
However, the multi-UAV system has only partial information
and an imperfect environment model, the environment state
prediction can not be entirely accurate. To adapt to the
uncertainty in real-time, we leverage the principle of Model
Predictive Control (MPC) approach, which requires optimizing
a UAV’s path for the predicted environment state at t+T , but
only executing the first action from the optimized path.

Specifically, we use the collaborative perception component
to predict the environment states for future time step t + T
based on the recursive Bayesian function, and then the priority
score for each location can be obtained by Eq. (17). Our objec-
tive is to find a T -step path for each UAV such that the score
sum of visiting the locations in the paths is maximized. We
then construct a priority graph for the cells by direct acyclic
graph (DAG) to facilitate the path calculation. Specifically, we
characterized a priority graph G as (V,E,W ), where V,E,W
are the set of nodes, edges, and edge weights, respectively.
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TABLE I
DEFAULT PARAMETERS FOR TESTBED EXPERIMENT AND SIMULATION

Parameter Symbol Value

UAV velocity (testbed) v 3m/s
UAV velocity (simulation) v 15m/s
Measurement accuracy Pm 0.95
Successful fire suppression probability Ps 0.80
Sample period rt 5s
Planning horizon T 16
Communication frequency Tc 8
Initial Fire Size ni 4× 4
Fire extinguishing ball number nb 16
FoV of vision sensor I 3× 3
Range of fire suppression equipment S 1× 1

Each node vi represents a cell i in the environment, while
each edge eij connects node vi and node vj whose Chebyshev
distance is less than two (i.e., ∥vi−vj∥∞ ≤ 2). For each edge
eij with its tail on node vj , the weight is assigned denoting
the predicted priority score.

2) Multi-UAV Sequential Allocation: Even if we only con-
sider one-step planning, finding optimal paths for multiple
UAVs in a DAG is known to be an NP-hard team orienteering
problem [42]. Given the limited decision time in real-world
deployment in a dynamic environment, we do not expect to
find the optimal solution efficiently. Instead, our goal is to
efficiently find near-optimal solutions, where the performance
is close to the optimal value.

Inspired by [43], we adopt a sequential allocation scheme
to coordinate multiple UAVs. To simplify notation, let Pr =
{at:t+T

r , µt:t+T
r } indicate the joint action-moving path for

UAV r, and U t+T (Pr) indicate the sum of score for path
P over the constructed priority graph. Thus the solution for a
single UAV is denoted as:

P̂1 = argmax
P

U t+T (P), (18)

which can be efficiently solved by the Bellman-Ford algorithm
[44] with a O(T 4) complexity. The sequential allocation
algorithm then optimizes the path Pr for UAV r conditioned
on all paths P1, · · · ,Pr−1 that have been selected such that,

Pr = argmaxP UP(1:r−1)(P)

UP (P ′) = U (P ∪ P ′)− U(P)

P(1:r−1) = P1 ∪ · · · ∪ Pr−1.

(19)

It is noticed that this approach reduces computation
complexity from exponential to linear, i.e., from
O
(
|U1 × · · · × Unr

|T
)

to O
(∑nr

i=1 T 4
)
. Since the

constructed priority graph satisfies modularity, the obtained
solution P̂ by sequential allocation can achieve least 50% of
the optimal values as proven in [45], i.e., U(P̂) ≥ 1/2U(P∗)
where P∗ denotes the optimal solutions.

V. EVALUATION

In this section, we evaluate the performance of our
SOScheduler and baselines for fire suppression scenarios.
Experiments are conducted on both real multi-UAV systems
and physical feature-based simulations.

(b)

(c)

(d)

Wi-Fi

UAVs

(a)

Ground Station

Start Location

Camera

Fig. 5. Testbed experimental setup and scenarios of SOScheduler. (a)(d)
Side view and top view of the experimental scenario with dynamic wildfire
animation. (b) UAV platform DJI Tello EDU. (c) Example view of a UAV.

A. Implementation and Methodology

1) Testbed Implementation: To validate our SOScheduler in
the fire suppression scenario, we run experiments on a real-
time multi-UAV testbed in the 8m×10m indoor environment,
as shown in Fig. 5. Most parts of the testbed adopt the same
setup as the real scenario, including the sensing, motion,
communication, and computation of the multi-UAV system.
The UAVs take off randomly at a corner of the area to emulate
the entry of UAVs into a real-world wildfire scenario.

To eliminate safety concern and increase repeatability, we
mimic fire spread and suppression through projected lights,
which has been validated by [46]. The testbed consists of three
major components:
• Multi-UAV platform: Three commercial UAVs DJI Tello
EDUs, which is equipped with an onboard camera for visual
information and a 2.4 GHz 802.11n Wi-Fi for wireless com-
munication. Fire state classification is performed using the
imagery from the onboard camera through the OpenCV. At
each time unit of the experiment, UAVs derive commands from
the ground station for sensing and operation.
• Ground station: A laptop equipped with an Intel i5
2.60GHz CPU is used as the ground station (i.e., edge server),
where we merge the information from multiple UAVs and plan
their paths at each decision interval.
• Fire environment: We project the dynamic fire environment
animations to the ground, which is discretized into cells
representing an area of 250m × 250m in real world with a
1:1000 scaled-down ratio. Environment states (xt

i) are illus-
trated with different colors (e.g. red for on fire). When a UAV
conducts fire suppression operation on one cell, its color (state)
changes with a probability to minic the uncertainty of fire
suppression effect. The wildfire animation updates according
to fire suppression operation of UAVs and a stochastic fire
spread model [27]. Note that based on our experiences and
previous experiments, different wildfire models adopted do not
change the effectiveness of our experiment. In the experiment,
we consider three typical scenarios: (1) slow-moving wildfire,
(2) moderate-paced wildfire, and (3) fast-evolving wildfire in
the experiments. The major default settings are summarized
in Table I.

2) Simulation Setup: To validate the performance of
SOScheduler under various environmental conditions in a
large-scale terrain with more UAVs, we conduct evaluations
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(a) Slow-moving fire (b) Moderate-paced fire (c) Fast-evolving fire

Fig. 6. The fractions of cells in different states change with time under different wildfire scenarios. (a) slow-moving fire condition. (b) moderate-paced fire
condition. (c) fast-evolving fire condition.

(a) FER comparison (b) FCR comparison

Fig. 7. Overall performance in testbed experiments under various wildfire
speeds. (a) Impact of fire propagation velocity on FER. (b) Impact of fire
propagation velocity on FCR.

with respect to the two most significant environmental factors
[23]: fire propagation velocity and the number of initial fires.
To mimic real-world wildfire fighting scenarios with more
UAVs, we simulated a terrain of 10km×10km and discretized
it into 50 × 50 cells. The measurement accuracy is set as
95.7% according to the testbed detection results on average.
The default number of UAVs is set as 15, other default settings
are consistent with the testbed experiments and summarized
in Table I.

3) Evaluation Metrics: Our collaborative framework aims
to prevent the spread of the fire and minimize the damage to
the surrounding environment. Besides, the effectiveness of our
method is based on the coverage of real-time observations of
fire. Therefore, we use the following two metrics:
• Fire expansion ratio (FER): It evaluates the operation
performance by measuring the average ratio of the increase
in fire and burnt out area after the mission to the initial fire
area,

FER =

∑n
i (1− IH(xT

i ))∑n
i (1− IH(x0

i ))
− 1, (20)

where IH(x0
i ) and IH(xT

i ) are indicator function that denotes
whether cell i remains healthy at the beginning and end of
the mission, respectively. FER is the specific form of UT (·)
in Eq. (4) for wildfire suppression scenarios. The metric is
typically far more than one due to the fast expansion of fire
thus the smaller value indicates better performance.

• Fire coverage ratio (FCR): It evaluates the sensing perfor-
mance by measuring the average fraction of ground truth fires
covered by the UAVs over the full mission period,

FCR =
1

T

T∑
t=1

∣∣⋃
r∈ R {i ∈ RS(p

t
r) | xt

i = F}
∣∣

|{i ∈ Z2 | xt
i = F}|

, (21)

where T is the total number of simulation time steps. The
metric is typically less than one due to the limited number
of UAVs and their constrained sensing capabilities. The larger
value represents better performance.

4) Baselines: Two baselines are adopted to validate the
advantages of our SOScheduler.
• DDRL [22]: A state-of-the-art reinforcement learning (RL)-
based framework for dynamic wildfire control. During the
wildfire, each UAV receives an uncertainty map as the input
of the policy network, and outputs a direction to move for the
next time step.
• Heuristic (HEUR) [47]: A two-stage complex heuristic
algorithm, which schedules the agents to find the fire centers
at first and then move counterclockwise along the fire fronts.

B. Overall Performance
1) Testbed Experiment Results: To analyze how the fire

changes with suppression efforts, we plot the percentages of
cells in different states over time under various fire speeds
in Fig. 6. As seen in Fig. 6(a) and Fig. 6(b), the fractions
of on fire and burnt cells increase initially as time steps
change from 1 to 10, indicating rapid wildfire spreading while
UAVs explore the area. However, as time steps increase, UAVs
find the fire front and start to suppress the fire, leading to a
downtrend in terms of the fraction of burning cells. Finally,
the fraction of burning cells in both scenarios turns to zero,
signifying a successful fire suppression. As for the most
challenging fast-evolving scenario in Fig. 6(c), the fraction of
on fire cells first inreases again after an initial decrease. This is
because UAVs reach the fire front and mitigate the spreading to
some extent initially. However, the aggressive propagation and
exponential growth of the firefront make suppression highly
complex, rendering it impossible to extinguish the wildfire
completely for three UAVs.

Fig. 7(a) measures the average FER for all scenarios after
experiments, comparing with two baselines. The results show
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(a) FER comparison (b) FCR comparison

Fig. 8. Overall performance in simulation experiments under various wildfire
speeds.

(a) FER comparison (b) FCR comparison

Fig. 9. Overall performance in simulation experiments under different
numbers of initial fires.

Fig. 10. An example snapshot of the simulation experiment under three
initial fires. Left: 3-dimensional view. Dots and lines in various colors denote
distinct UAVs and their trajectories, respectively. Right: 2-dimensional view.
Translucent rectangles around the UAVs indicate their field of view (FoV).

that SOScheduler outperforms HEUR and DDRL under all
scenarios. As seen, the FER increases with the growth of fire
propagation velocity, which indicates an increasing difficulty
in timely fire suppression. As for the performance in the most
challenging fast-evolving scenario, the FER of SOScheduler is
6.22, which outperforms DDRL by 59.1% and exceeds HEUR
by more than 35.4%.

We also evaluate the average FCR for all scenarios, as
shown in Fig. 7(b). With the increase of the fire propaga-
tion velocity, the FCR of two baseline methods decrease.
In contrast, our SOScheduler remains an FCR of more than
0.55 under all fire velocities, outperforming baselines. This
is because our algorithm actively evaluates the information
gain throughout the mission, enabling the UAVs to revisit
the uncertain areas and thus discover more regions that just
transited from healthy into burning.

In summary, SOScheduler can successfully contain wildfires
in general with a small group of UAVs due to its adaptive
action strategy and effective cooperation. Further evaluation
of the influence of the number of UAVs will be conducted in
V-C.

2) Simulation Experiment Results:
Fire Propagation Velocity: We evaluate the FER and

FCR of SOScheduler on three wildfire scenarios mentioned
in Section V-A, as shown in Fig. 8. Fig. 8(a) shows that
SOScheduler has consistent advantages over two baselines
under all wildfire conditions. Especially, in fast-evolving fires,
SOScheduler outperforms DDRL and HEUR flight by 70.8%
and 58.7% on FER, respectively. This superior performance

can be attributed to the system’s ability to actively estimate
the confidence values of each location, leading to a timely and
dynamic adjustment of the scheduling strategy. Furthermore,
Fig. 8(b) shows the average FCR under all scenarios. We can
see that the FCR of all methods decrease with the growth of
fire velocity, since the area size of fire increases exponentially.
However, SOScheduler achieves an average FCR greater than
0.5 in the fast-evolving scenario whereas for the best baseline
HEUR, the maximum achievable FCR is only 0.2. In summary,
these results validate that SOScheduler has the ability to adapt
the planning policy in a manner that is commensurate with the
propagation velocities of the fire, contributing to effective and
efficient fire suppression.

Number of Initial Fires: To evaluate the efficacy of our
SOScheduler for various initial fire conditions, we consider
scenarios including one to five initial fires in the terrain.
Each initial fire occupies 3 × 3 cells and is randomly placed
in the terrain without overlap at the beginning. From 9(a),
we can see that FER increases with the number of initial
fires in general. SOScheduler outperforms baselines under
variant initial fire conditions, because it explicitly models
the uncertainty in the environment model and reason about
the fire status. This can also be verified in Fig. 9(b), where
SOScheduler maintains higher FCRs for most of the scenarios,
indicating more exploration to collect the new information.
Fig. 10 illustrates an example snapshot of scenarios during
experiments under three initial fires. In summary, SOScheduler
enables the UAVs to efficiently cooperate with each other and
provides an empirically more optimal solution when there are
multiple initial fires.

C. System Robustness
We further evaluate SOScheduler with respect to the number

of UAVs and model accuracy. Since the system performance
has been verified under varying wildfire speeds, we do not
verify the impact of UAV speed, which is equivalent to
validating the influence of wildfire speed.

1) Number of UAVs: We examine the impact of the number
of UAVs under the challenging fast-evolving scenario with 5
initial fires, as shown in Fig. 11. The result demonstrates that
increasing the number of UAVs leads to a higher FCR and a
lower FER in general, as a larger team of UAVs allows for
more sensing and operation actions to be applied. Furthermore,
the benefit of increasing the number of UAVs diminishes
for SOScheduler after the number of 25, since 25 UAVs are
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Fig. 11. Impact of Number of
Robots.

Fig. 12. Impact of Model Accuracy. Fig. 13. Comparison of Different
Utility Function.

Fig. 14. Comparison of Runtime.

sufficient to quickly extinguish the wildfire in this scenario. It
is noteworthy that SOScheduler still achieves a FER of 22.3
even with 10 UAVs, outperforming the DDRL and HEUR
approaches with 15 UAVs that achieve FER of 46.3 and 32.7,
respectively (as shown in Fig. 8(a)).

2) Model Accuracy: We showed the robustness of
SOScheduler to the different levels of accuracy of the en-
vironment model. The model accuracy is influenced by the
accuracy of the measurement model. We take measurement
accuracy as a random variable and sample its values from
the random uniform distribution in [0.5, 0.95]. With different
configured parameters, we can obtain multiple spatio-temporal
environment models with varying accuracy levels. As Fig. 12
shows, the overall FER under varying model accuracy levels
remains robust. This is because our algorithm encourages the
system to explore the environment based on the uncertainty in
the belief and incorporate the in-field measurement to instruct
the scheduling strategy, therefore it can tolerate the imperfect
model to some extent and maintain high performance.

D. System Micro-benchmark

1) Effectiveness of Confidence-aware Assessment: We also
compare the FER with different utility function designs in
Fig. 13. In the experiment, we compare our Spatio-temporal
Confidence-aware Assessment model with another two strate-
gies, greedy operation (i.e., λ(i, t) ≡ 1, α = 1) and bi-
objective with equal weights (i.e., λ(i, t) ≡ 1, α = 0.5),
both widely used in previous works [48]. As seen, when
the fire is fast-evolving, SOScheduler demonstrates greater
advantage with an improvement of FER for 31.5% and 60.3%
compared to greedy operation and bi-objective, respectively.
This outstanding performance is due to the design of the
confidence map as an efficient knob to dynamically adjust
the estimated gains, which mitigates over-reliance on the
environment model and enables the adaptive adjustment of
scheduling strategy in uncertain dynamic environments.

2) Runtime: We further evaluate the computation efficiency
and advantages of SOScheduler’s coordination scheme in a
small-scale scenario (i.e., less than 10 UAVs). Fig. 14 illus-
trates the runtime of our graph-based sequential allocation al-
gorithm, compared with the optimal solution (OPT) calculated
by brute force methods. As seen, the time cost of OPT grows
exponentially with the number of UAVs, while SOScheduler
has a negligible time cost, e.g., when there are 9 UAVs, the
time cost of OPT is up to more than 3000s, while SOScheduler
keep a small time cost of less than 4s. Notably, the runtime

of our sequential allocation algorithm grows linearly with
the number of UAVs, which echoes the linear computation
complexity, as described in Section IV-C.

VI. CONCLUSION

A. Conclusion

This paper proposes SOScheduler, a multi-UAV scheduling
framework for integrated wildfire monitoring and suppression.
First, UAVs estimate and predict environment state with shared
onboard sensing data in a collaborative way. Second, UAVs
adaptively identify optimal locations for enhancing environ-
mental understanding and operational effectiveness. Finally,
UAVs decide their trajectory and corresponding actions in a
non-myopic way with a scalable planning algorithm. Extensive
experiments demonstrate its superior performance, which indi-
cates that SOScheduler can integrate with existing probabilistic
modeling of disaster environments and provide autonomous
and efficient emergency response in large-scale and dynamic
environments.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3389771

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



12

REFERENCES

[1] R. Bailon-Ruiz and S. Lacroix, “Wildfire remote sensing with uavs:
A review from the autonomy point of view,” in 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 412–
420.

[2] M. A. Akhloufi, A. Couturier, and N. A. Castro, “Unmanned aerial vehi-
cles for wildland fires: Sensing, perception, cooperation and assistance,”
Drones, vol. 5, no. 1, p. 15, 2021.

[3] C. K. Brewer, J. C. Winne, R. L. Redmond, D. W. Opitz, and M. V.
Mangrich, “Classifying and mapping wildfire severity: A comparison of
methods,” PHOTOGRAMMETRIC ENGINEERING.

[4] F. H. Panahi, F. H. Panahi, and T. Ohtsuki, “An intelligent path planning
mechanism for firefighting in wireless sensor and actor networks,” IEEE
Internet of Things Journal, 2023.

[5] D. Wang, D. Guan, S. Zhu, M. M. Kinnon, G. Geng, Q. Zhang,
H. Zheng, T. Lei, S. Shao, P. Gong et al., “Economic footprint of
california wildfires in 2018,” Nature Sustainability, vol. 4, no. 3, pp.
252–260, 2021.

[6] M. A. Moritz, E. Batllori, R. A. Bradstock, A. M. Gill, J. Handmer,
P. F. Hessburg, J. Leonard, S. McCaffrey, D. C. Odion, T. Schoennagel
et al., “Learning to coexist with wildfire,” Nature, vol. 515, no. 7525,
pp. 58–66, 2014.

[7] L. Zhang, C. Lu, H. Xu, A. Chen, L. Li, and G. Zhou, “Mmfnet: Forest
fire smoke detection using multiscale convergence coordinated pyramid
network with mixed attention and fast-robust nms,” IEEE Internet of
Things Journal, 2023.

[8] X. J. Walker, J. L. Baltzer, S. G. Cumming, N. J. Day, C. Ebert, S. Goetz,
J. F. Johnstone, S. Potter, B. M. Rogers, E. A. Schuur et al., “Increasing
wildfires threaten historic carbon sink of boreal forest soils,” Nature,
vol. 572, no. 7770, pp. 520–523, 2019.

[9] M. R. Nosouhi, K. Sood, N. Kumar, T. Wevill, and C. Thapa, “Bushfire
risk detection using internet of things: An application scenario,” IEEE
Internet of Things Journal, vol. 9, no. 7, pp. 5266–5274, 2021.

[10] R. R. Buchholz, M. Park, H. M. Worden, W. Tang, D. P. Edwards,
B. Gaubert, M. N. Deeter, T. Sullivan, M. Ru, M. Chin et al., “New
seasonal pattern of pollution emerges from changing north american
wildfires,” Nature Communications, vol. 13, no. 1, p. 2043, 2022.

[11] A. Bouguettaya, H. Zarzour, A. M. Taberkit, and A. Kechida, “A review
on early wildfire detection from unmanned aerial vehicles using deep
learning-based computer vision algorithms,” Signal Processing, vol. 190,
p. 108309, 2022.

[12] O. M. Bushnaq, A. Chaaban, and T. Y. Al-Naffouri, “The role of uav-iot
networks in future wildfire detection,” IEEE Internet of Things Journal,
vol. 8, no. 23, pp. 16 984–16 999, 2021.

[13] J. John, K. Harikumar, J. Senthilnath, and S. Sundaram, “An efficient
approach with dynamic multi-swarm of uavs for forest firefighting,”
arXiv preprint arXiv:2211.01958, 2022.

[14] J. S. Almeida, C. Huang, F. G. Nogueira, S. Bhatia, and V. H. C.
de Albuquerque, “Edgefiresmoke: A novel lightweight cnn model for
real-time video fire–smoke detection,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 11, pp. 7889–7898, 2022.

[15] T. Lewicki and K. Liu, “Aerial sensing system for wildfire detection:
demo abstract,” in Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 2020, pp. 595–596.

[16] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu et al., “Swarm of micro flying robots in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm5954, 2022.

[17] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, p. eabg5810, 2021.

[18] H.-J. Yoon, H. Kim, K. Shrestha, N. Hovakimyan, and P. Voulgaris,
“Estimation and planning of exploration over grid map using a spa-
tiotemporal model with incomplete state observations,” in 2021 IEEE
Conference on Control Technology and Applications (CCTA), 2021, pp.
998–1003.

[19] Y. Xie, I. P. Bodala, D. C. Ong, D. Hsu, and H. Soh, “Robot ca-
pability and intention in trust-based decisions across tasks,” in 2019
14th ACM/IEEE International Conference on Human-Robot Interaction
(HRI). IEEE, 2019, pp. 39–47.

[20] C. Phan and H. H. Liu, “A cooperative uav/ugv platform for wildfire
detection and fighting,” in 2008 Asia Simulation Conference - 7th In-
ternational Conference on System Simulation and Scientific Computing,
2008, pp. 494–498.

[21] M. Kumar, K. Cohen, and B. HomChaudhuri, “Cooperative control
of multiple uninhabited aerial vehicles for monitoring and fighting

wildfires,” Journal of Aerospace Computing, Information, and Commu-
nication, vol. 8, no. 1, pp. 1–16, 2011.

[22] R. N. Haksar and M. Schwager, “Distributed deep reinforcement learn-
ing for fighting forest fires with a network of aerial robots,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1067–1074.

[23] E. Seraj, A. Silva, and M. Gombolay, “Multi-uav planning for coopera-
tive wildfire coverage and tracking with quality-of-service guarantees,”
Autonomous Agents and Multi-Agent Systems, vol. 36, no. 2, p. 39, 2022.

[24] H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, “A distributed
control framework of multiple unmanned aerial vehicles for dynamic
wildfire tracking,” IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, vol. 50, no. 4, pp. 1537–1548, 2020.

[25] D. W. Casbeer, D. B. Kingston, R. W. Beard, and T. W. McLain,
“Cooperative forest fire surveillance using a team of small unmanned
air vehicles,” International Journal of Systems Science, vol. 37, no. 6,
pp. 351–360, 2006.

[26] D. Bertsimas, J. D. Griffith, V. Gupta, M. J. Kochenderfer, and V. V.
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A. Cortés, and T. Margalef, “Automatic fire perimeter determination
using modis hotspots information,” in 2016 IEEE 12th International
Conference on e-Science (e-Science). IEEE, 2016, pp. 414–423.

[30] T. Fukuhara, T. Kouyama, S. Kato, R. Nakamura, Y. Takahashi, and
H. Akiyama, “Detection of small wildfire by thermal infrared camera
with the uncooled microbolometer array for 50-kg class satellite,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp.
4314–4324, 2017.

[31] I. Yoon, D. K. Noh, D. Lee, R. Teguh, T. Honma, and H. Shin, “Reliable
wildfire monitoring with sparsely deployed wireless sensor networks,”
in 2012 IEEE 26th International Conference on Advanced Information
Networking and Applications. IEEE, 2012, pp. 460–466.

[32] Y. K. Tan and S. K. Panda, “Self-autonomous wireless sensor nodes
with wind energy harvesting for remote sensing of wind-driven wild-
fire spread,” IEEE Transactions on Instrumentation and Measurement,
vol. 60, no. 4, pp. 1367–1377, 2011.

[33] H. Lin, X. Liu, X. Wang, and Y. Liu, “A fuzzy inference and big data
analysis algorithm for the prediction of forest fire based on rechargeable
wireless sensor networks,” Sustainable Computing: Informatics and
Systems, vol. 18, pp. 101–111, 2018.

[34] J. Rückin, L. Jin, and M. Popović, “Adaptive informative path planning
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