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Abstract—With the prevalence of 4G/5G infrastructure and
mobile devices, mobile video streaming has become an ubiquitous
element of daily life. Nevertheless, the online delivery of high-
resolution videos, such as 2K and 4K formats, encounters
significant challenges due to bandwidth limitations and network
fluctuations. Existing neural-enhanced video streaming systems
primarily struggle with two issues: the difficulty of recovering
intra-frame high-frequency content and reusing the inter-frame
content correlation. Addressing these challenges, this paper intro-
duces a novel approach, designated as DoMo, which reconsiders
the potential of mobile-side video super-resolution (SR) from
a cloud perspective. We implement DoMo for the VP9 codec
and test on real on-demand streaming media videos. Empirical
results indicate that DoMo not only surpasses current state-of-
the-art neural-enhanced solutions by achieving a 3.32 - 4.54 dB
improvement in the peak signal-to-noise ratio (PSNR), but also
outperforms traditional non-SR decoding methods by 6.80 -
8.89 dB.

Index Terms—Video Streaming, Artificial Intelligence, Mobile
Computing

I. INTRODUCTION

The ubiquity of the 4G/5G infrastructure and mobile devices
has made mobile video streaming a fundamental aspect of
daily life [1]. Meanwhile, higher resolution video streams
(e.g., 4K), are aligning with consumer demands for enhanced
video quality and are emerging as a significant trend. This
market is predicted to reach a valuation of $1 trillion dollars
in the coming years, with mobile video streaming serving as
a crucial driver of this market expansion [2], [3]. However,
delivering those videos online poses challenges due to band-
width constraints and network instability [4], [5]. Although
efforts have been made to maximize user QoE with bit-
rate adaptation to manage network fluctuations [6]–[10], they
cannot consistently ensure high QoE in diverse visual content
and network conditions.

As an alternative, tackling the issue from the perspective
of video rather than network, neural enhancement techniques
- specifically video super-resolution (SR) - have also hit the
mainstream [11]–[16]. Current practice improves video qual-
ity by reconstructing high-quality videos from low-resolution
(LR) streams acquired on the mobile side, mitigating the
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effects of poor network conditions. A typical neural-enhanced
system comprises two main components: cloud-side video
downscaling and mobile-side video SR. The cloud down-scales
high-resolution (HR) videos to lower ones (e.g., 270p or
540p) according to network conditions and re-encodes them
into chunks for streaming. Upon receiving them, the mobile
employs an SR neural network to recover the video quality.

Albeit inspiring, our experiments with 4K YouTube video
data reveal that current efforts still fall short in enhancing
user QoE. The underlying issue is that existing solutions
concentrate on designing and optimizing mobile-side SR neu-
ral networks, but overlook how the cloud should downscale
videos to better suit mobile-side SR video reconstruction. The
absence of coordinated design between cloud- and mobile-side
frameworks results in two primary challenges:
• Intra-frame high-frequency content is hard to recover.
The cloud downscales video frames for transmission over
networks with limited bandwidth. Current practice commonly
employs basic downscaling filters, such as bilinear and bicu-
bic [17]. However, these methods often result in the loss
of high-frequency information, which includes critical details
such as fine textures and sharp edges, making SR reconstruc-
tion challenging and impacting user QoE (§II-B1).
• Inter-frame content correlation is difficult to reuse. To en-
hance the SR efficiency on mobile devices, recent works [13]
apply neural network inference selectively to anchor frames
and propagate these results to non-anchor frames by interpolat-
ing the inter-frame residuals (§II-A). However, these residuals
from acquired video streams represent differences between
downscaled, LR (e.g., 540p) frames and fail to capture the
accurate differences between HR (e.g., 4k) frames after SR
upscaling. Consequently, this interpolation process accumu-
lates errors over time, which impedes the effective use of
inter-frame content correlations for reconstructing non-anchor
frames (§II-B2).
Remark: In summary, the quality of video reconstructed on
the mobile through SR is fundamentally linked to the quality of
the video initially downscaled by the cloud. Enhancing system
performance requires simultaneous optimization of both cloud-
side downscaling and mobile-side SR modules. Specifically,
crucial aspects are (i) preserving high-frequency intra-frame
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Fig. 1: Video on-demand Delivery System

details during downscaling and (ii) designing video streams
that support SR-compatible inter-frame content correlations.

Our Work: We translate the above insights into a practical
system and present DoMo, the first work to rethink and
unleash the potential of mobile-side video SR from the cloud’s
perspective. DoMo further enhances video quality through the
cloud-mobile co-design.

• On the cloud front, our design incorporates three modules:
(i) for intra-frame SR, we design an Efficient Invertible Neu-
ral Network to encode high-frequency information, replacing
simpler filters like Bicubic that typically generate LR videos
(§III-A); (ii) for inter-frame SR, a Reuse Aware Neural
Network Training framework is developed to identify and
mitigate video quality loss during frame interpolation in the
upscaling process, thereby improving video quality (§III-B);
and (iii) a Video Frames Joint Selector is further designed to
reduce overall errors in reusing decoded frames (§III-D).

• On the mobile front, we have developed a Ref-based
Neural Decoder, an enhancement of the existing SR-integrated
decoder, to sync with advances on the cloud side, effectively
addressing intra-frame and inter-frame challenges and enabling
superior video frame reconstruction (§III-C).

We have expanded libvpx [18] to fully implement DoMo for
VP9 [19] and tested it on real on-demand streaming videos.
Our experiments demonstrate that, at equivalent bitrates and
throughput, DoMo significantly improves video quality (in
PSNR), achieving gains of 3.32 - 4.54 dB over the state-of-
the-art solution (i.e., Nemo [13]) and 6.80 - 8.89 dB over
conventional decoding methods. Furthermore, under identical
video quality and bandwidth conditions, DoMo reduces energy
consumption by 45.7% compared to Nemo. Furthermore, when
tested with real network data and a traditional adaptive bitrate
streaming (ABR) algorithm, our system improves the average
QoE by 29.6%.

In summary, this paper makes the following contributions:

• We conduct a systematic analysis of the key limitations
in existing neural-enhanced video delivery systems and,
on this basis, introduce a novel perspective to optimize
mobile-side video SR from the cloud’s viewpoint.

• We design a closed-loop neural-enhanced on-demand
video streaming system through cloud-mobile co-design.

• Extensive evaluations demonstrate that our system
achieves improved video quality, QoE, and power con-
sumption performance.
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Fig. 2: Nemo [13] applied neural network inference to anchor
frames and propagated these results to non-anchor frame.

II. BACKGROUND AND MOTIVATION

A. Primer on Neural-enhanced Video On-demand Delivery

Recent advances in SR integrated video streaming bring a
new chance for QoE enhancement using mobile-side compu-
tation independent of the network bandwidth. In this scheme,
videos in the cloud are compressed into multiple versions
with various bitrates and resolutions by downscaling and re-
encoding. When some mobile send a request for a video, the
mobile downloads an LR version video and applies SR on
the video frames to reconstruct the HR visuals. To make the
process real-time and energy-efficient, pioneer studies [13],
[16] avoid applying SR on every frame but transfer the pixels
of cached HR frames to other frames.

Among them, the state-of-the-art work Nemo [13] imple-
ments the transfer by using residuals and motion vectors from
the video codec to compensate for the temporal difference. The
key method is illustrated in Fig. 2. Nemo divides video frames
into anchor frames and non-anchor frames. Anchor frames
undergo up-scaling using an SR model to enhance their detail
and clarity. Non-anchor frames are upscaled by reusing the
HR result of dependent anchor frames. More precisely, each
HR block bhj of a non-anchor frame j is matched with the
dependent HR block bhi in the previous anchor frame i. The
residual rhij between bhj and bhi is estimated by interpolation
upscaling on the residual rlij between the LR frames i and j.
This can be formally expressed as follows:

bhj = bhi + UPSCALING(rlij). (1)

Although practical, existing solutions focus on designing
and optimizing mobile-side SR, and overlook how the cloud
downscales LR video, which makes it hard to recover high-
frequency content and reuse content correlation.

B. The Challenges of Previous mobile-side SR Research

Mobile-side SR enables real-time decoding of mobile video
streaming using neural networks, but it presents certain chal-
lenges. The quality of the decoded video hinges on two critical
aspects: (1) high-frequency content is missing and (2) the
loss of quality due to residual interpolation when reusing
decoded frames. We analyze the state-of-the-art system with
4K YouTube videos, and our experiments reveal limitations in
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both areas, resulting in a notable degradation of video quality,
additional power consumption, and bandwidth consumption.

1) From Intra Frame’s Perspective: Firstly, we find that
the SR network exhibits unstable performance across different
chunks of videos (Fig. 4a). We utilized neural networks
within the NEMO [13] to upscale 540p videos to 2160p,
and subsequently compared the results with the original 540p
videos. In 12.4% of the chunks, the average quality decoded by
per-frame DNNs is lower than that decoded directly through
interpolation of the original VP9 video. And in 50% of the
chunks, the quality gain is less than 2.97dB.

SR algorithms define the highest achievable video quality in
SR-based video streaming systems. However, the result shows
that the SR process becomes a quality bottleneck, limiting
the potential improvements in some scenarios. We considered
whether this issue stems from neural networks themselves.
Despite utilizing more powerful neural networks like RCAN
[20] for testing, the enhancements are not significant, for about
26% of video chunks, the quality gain is lower than 3dB.
Moreover, it introduces greater computational latency.

The commonly used low-pass filtering technique for down-
scaling [21], [22], as guided by the Nyquist–Shannon sampling
theorem, inherently results in the loss of high-frequency details
during the downscaling process [23], [24]. Given that SR
tasks are fundamentally ill-posed and high-frequency details
are more difficult to recover, relying solely on neural network
optimization during the decoding phase is insufficient for
achieving high-quality video output [25], [26].

To achieve this, we use a specialized neural network archi-
tecture to generate LR videos that diverge from traditional in-
terpolation methods (§III-A). Furthermore, we have identified
a significant opportunity to enhance the decoding process by

leveraging inter-frame information, which has been underuti-
lized in conventional SR techniques. We can obtain additional
high-frequency information from the already decoded frames
to assist in restoring the anchor frames (§III-C).

2) From Inter Frame’s Perspective: Furthermore, our evalu-
ations revealed that the decoding approach that reuses residuals
from previously decoded frames incurs a degradation in qual-
ity. This decline comes from differences in how each method
handles resolution adjustments during playback. Traditionally,
to upscale LR videos for HR display, interpolation methods
are used for each frame rather than for residuals. SR-integrated
codec relies on interpolating residuals, despite utilizing infor-
mation from already decoded frames, which also leads to an
accumulation of errors brought by interpolation.

Fig. 4b illustrates the result of per-frame quality under
the SR-integrated codec and traditional decoding methods
following the SR of the first frame. Initially, the SR-integrated
codec benefits from the HR first frame, yielding better quality
in subsequent frames. However, as the video progresses, by 5th
frame, a decline in quality is observed with the SR-integrated
codec compared to traditional decoding.

The error from reusing decoded frames is caused by two
parts: the first part comes from the inaccuracies in SR on
the anchor frames, and the second part comes from the
accumulation of errors through continuous reuse.

The accumulation of errors arises from the imprecision of
residual interpolation, and this decline is attributed to the
cumulative effect of errors that build up over time. To address
this issue, we revealed the relationship between inter-frame
content and the decline in reuse quality in §Sec. III-B, and
designed a new neural network training method that adjusts the
overall content to reduce error accumulation without affecting
the quality during the compression process.

Overall, existing systems have flaws in both Intra-frame
and Inter-frame aspects. Given these challenges, we recognize
that in video-on-demand streaming scenarios, we could control
over the entire video streaming process, which raises the ques-
tion: why not further optimize the cloud-side video encoding
process? Existing solutions have only addressed mobile-side
decoding processes, while lacking effective analysis on how
to adapt cloud-side operations for neural-enhanced video-on-
demand streaming. Therefore, we propose to collaboratively
optimize the existing system on both the cloud side and the
mobile side.



III. SYSTEM DESIGN

To overcome the limitations of previous works in Sec. II-B,
we propose DoMo to enhance video quality through co-design
of the cloud-mobile. Fig. 3 shows the architecture of DoMo.
Our design includes four modules:

(i) Invertible Neural Network efficiently encodes high-
frequency information to LR videos.

(ii) Reuse Aware Neural Network Training perceives the
video quality loss caused by interpolation of frames during
the upscaling process, thereby enhancing the video quality.

(iii) Video Frames Joint Selector selects reference frames,
core frames, and non-core frames to decrease the overall error
when reusing the decoded frames.

(iv) Ref-based neural decoder reconstructs anchor frames
based on the existing SR-integrated decoder.

A. Efficient Invertible Neural Network Design

Our goal is to concurrently train the downscaling and
upscaling processes in videos using neural networks, aiming
to enhance the quality of reconstructed videos. Traditional
neural-enhanced video streaming systems [13], [14], [27] fo-
cused primarily on developing neural networks for upscaling,
neglecting the downscaling aspects.

Drawing inspiration from pioneering efforts in image en-
hancement [24], [28], we have incorporated the Haar wavelet
transform along with an invertible neural network to form
the backbone framework of our neural network processing
pipeline (Fig. 5). To enhance efficiency, we have refined the
design of the original reversible scaling network. we first apply
downscaling modules before running any inverse block to
enable the reversible convolutional layers to be applied on
lower resolutions. We also decrease the depth and complexity
of reversible convolutional layers.

Specifically, for inputs and outputs on a scale of s, we
employ the Haar transform to convert the HR input (with
dimensions H × W ) into low-frequency content l0 (with
dimensions H

s ×
W
s × 3) and high-frequency details h0 (with

dimensions H
s ×

W
s ×3×(2

s−1)). Then these components are
refined through invertible convolutional layers. Noticing that
the matrix of high-frequency information is sparse, first we use
an invertible layer to integrate high-frequency information and
reduce the number of operating channels. We then use another
invertible network layer to encode high-frequency information
into low-frequency information. The detail of the forward
process of invertible block is applied to the definition in [29]:

li+1 = li + ϕ(hi),

hi+1 = hi ⊙ exp(ρ(li+1))) + η(li+1)
(2)

where ϕ, ρ, η are functions defined by the neural network,
and here is defined by the convolutional block, and ⊙ is
the element-wise product. The processed low-frequency frame
content is quantized in uint8 format to storage.

During the decoding phase, we employ a similar structure
to compute the inverse process of the Equation 2 for upscaling
and enhancing mobile-side video frames.

Our experiments demonstrate that this innovative network
architecture significantly enhances the restoration of video
quality, outperforming traditional models.

B. Reuse Aware Neural Network Training

In our training, we pursue three key objectives:

• To minimize the quality degradation of non-anchor
frames which reuse the recovered HR frames during the
video player process on the mobile side.

• To preserve the legibility of LR videos, ensuring that they
remain as clear as when neural networks are not applied.

• To enhance the capability of the upscaling network,
enabling it to more effectively recover details through
LR frames transmitted to the mobile.

To fulfill these goals, our neural network training strategy
is structured into three distinct parts.

Inter Frame loss: As discussed in Chapter 2, selectively
executing neural networks has the cost that reusing frames
restored by SR results in quality decline due to interpo-
lation. Due to the residuals between frames (i.e., temporal
differences), reusing SR results can lead to a reduction in
quality. Moreover, since the video reconstruction process is
a non-differentiable process involving the overall encoding
process of the video, we cannot directly use gradient descent
to precisely train the neural network to directly reduce the
interpolation loss of non-anchor frame reconstruction.

We attempt to identify an optimization objective that en-
ables us to enhance this process through neural network-
based training. Inspired by the enhancement process of non-
anchor frames, we discovered that the quality degradation
caused by repeated anchor point usage exhibits a relatively
strong linear correlation (Fig. 6a, ρ = 0.732) with residual
values, while these residuals are highly correlated with pixel
differences between adjacent frames (Fig. 6b, ρ = 0.658).
This observation suggests that we can train neural networks
to generate low-resolution videos with controlled inter-frame
pixel differences to mitigate the quality degradation trend in
non-anchor frames. Although this study primarily establishes
a correlation rather than causality, it nonetheless suggests that
pixel differences could be regarded a target for optimization
during the network training process. This insight provides a
promising direction for refining our approaches to improving
video streaming quality.

Therefore, we use the pixel difference between LR frames
as an additional loss:

Linter =
1

M

M−1∑
t=1

(L(yt, yt+1)), (3)

where yt is the LR frames generated by the downscaling neural
network, M is the number of frames in a chunk and L is a
difference metric like the mean square error.

HR reconstruction loss: Our aim is to maximize the
quality of the reconstructed high-definition anchor frames.
Therefore, we minimize the differences between the original
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high-definition frames and the reconstructed high-definition
frames. The HR reconstruction loss is defined as

Lhr =
1

M

M∑
t=1

(L(I ′t, It)), (4)

where I ′t is the reconstructed HR frame generated by the
upscaling network (Fig. 5).

LR reference loss: The above two objectives ensure high-
quality recovery effects under SR conditions. However, we aim
for our system to maintain good video readability and quality
even when devices lack SR capabilities. Therefore, we employ
a LR reference loss based on interpolation, defined as follows:

Llr =
1

M

M∑
t=1

(L(↑ yt, It)), (5)

where It is the original HR frame, ↑ is an interpolation
method. In our experiment, ↑ uses the bilinear interpolation.

Overall, the loss function is combined with the three parts:
L = λ1Linter + λ2Lhr + λ3Llr. (6)

C. Ref-based Neural Decoder

In our redesign of the encoding process, we introduced core
frames specifically designed to retain HR details. Specifically
(refer to Fig. 5), Core frames are transmitted in HR to
preserve critical HR detail within the video. Anchor frames are
transmitted in LR, with SR algorithms applied on the client
side to enhance the video frame quality. Non-anchor frames
are also transmitted in LR but are quickly reconstructed using
non-neural network algorithms.

We developed the Ref-based SR Decoder to refine the
workflow of the decoder and maximize the utilization of
these high-definition details across more frames. We design a
lightweight attention module to extract high-frequency details
from the decoded core and anchor frames. In addition, we
implemented a reference scheduling method that strategically
selects previously decoded frames for reuse.

Cache Management: we extend the reference buffer within
the VP9 codec to support the Ref-based Neural Decoder. In
terms of cache management, frames are dynamically added
to the cache as they are decoded. Non-anchor frames are
subsequently removed from the cache once they are no longer
needed as references for future frames. Core and anchor frames
are retained in the cache until they are no longer needed for
reference by any non-anchor frames and are not scheduled
for reuse in enhancing anchor frames. Upon receiving a video
chunk, the mobile begins the sequential decoding process and
frames are classified based on the configuration file.

Core Frames are directly decoded into HR frames, ensuring
premium visual quality.

Anchor Frames decoding process starts by reading the
reference frame information from the configuration file and
retrieving the decoded frame data from the high-level cache.
Subsequently, a lightweight attention neural network is used
to extract and align high-frequency information relevant to the
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current frame from the reference frames, followed by the use
of an invertible neural network for image SR (Fig. 5).

Non-anchor frames are decoded by the SR-Integrated de-
coder. Firstly, we read the reference block, motion vector, and
residual information about the block in the frame through the
encoding information. Subsequently, utilizing motion vectors,
the decoder aligns the target block from the reference block.
Finally, the decoder employs lightweight bilinear interpolation
to decode and upscale the residual, which is then accumulated
onto the transferred blocks to output HR blocks.

D. Video Frames Joint Selector

During the offline optimization phase, our goal is to strategi-
cally select Core and Anchor frames within acceptable latency
limits to enhance video decoding quality.

However, a significant challenge arises in assessing the
potential of each frame to serve effectively as a Core frame.
Since each frame could be a Core, Anchor or Non-anchor
frame, the whole selection space is O(3|Frames|), and it is
computationally infeasible to evaluate every possible configu-
ration through real SR tests.

According to the design of the DoMo system, the differ-
ence between the recovered video frames and the original
video frames is determined by the discrepancy in their high-
frequency information. Since adjacent frames possess similar
high-frequency information, we can approximate the impact
of the SR algorithm results by evaluating the gap in high-
frequency information. Simultaneously, the extraction of high-
frequency information can be synchronized with the downscal-
ing process, eliminating the need for additional neural network
operations and thereby reducing the overall computational
overhead. We have

FQ(A ∪ i, C)k = max
j∈A

⋃
C,j<i

(FQ(A,C)k,

(1− λ∥zi − zj∥
∥zi∥

)FQ(i, )k),
(7)

where A is the set of anchor frames, C is the set of core
frames, zi is the high-frequency information generated by the
downscaling neural network, and FQ(·, ·)k is the quality of
the frame k under the certain anchor and core frame selection.

Another issue that requires approximation is how to assess
the impact of introducing core frames, which can cause other
frames to lose quality at the same average video bitrate. It is
impractical to re-encode the video with a new bitrate for every
possible selection of core frames. Because the size change
introduced by core frames could be calculated in advance, we

Algorithm 1 Joint Selector Algorithm

1: INPUT: Frames F = {Fi}, Max Anchor Num Ma, Max
Core Num Mc, Frame Num M

2: OUTPUT: Anchor Set A, Core Set C, reference relation
{rij}

3: for i = 1 to n do
4: {FQ(i, )} ← RUN SR DECODER(Fi)
5: {FQ(, i)} ← RUN CORE DECODER(Fi)
6: end for
7: V Q[0, 1, 0] = FQ(0, )
8: for i = 0 to M − 1 do
9: for j = 1 to min(Ma, i) do

10: for k = 0 to min(Mb, i− j) do
11: V Qcore ← PREDICT QUALITY CORE(V Q[i−

1, j, k − 1], FQ)
12: V Qanchor ← PREDICT QUALITY SR(V Q[i −

1, j − 1, k], FQ)
13: V Qother ← V Q[i− 1, j, k]
14: V Q[i, j, k]←max{V Qcore, V Qanchor, V Qother}
15: A,C, {rij} ←argmax{V Qcore,

V Qanchor, V Qother}
16: end for
17: end for
18: end for

can determine the value to which the bitrate of other frames
will decrease and then estimate the overall change in video
quality. The quality is as written:

FQ(A,C ∪ i)k =
q(R′)

q(R)
max(FQ(A,C)k, FQ(, i)k)∀k ̸= i,

(8)
where R and R′ is the bitrate under the core selection of C
and C ∪ i, q(Rn) is the utility of the chunk n. we utilized a
linear bitrate utility function to quantify video utility, where
q(Rn) = Rn [27], [30].

Based on the above content, we can design a dynamic
programming-based algorithm for selecting core frames and
anchor frames, as well as choosing reference frames for SR
of anchor frames. The selection result will be stored in the
cache profile and transmitted to the mobile for decoding. The
algorithm is as Algorithm 1.

IV. IMPLEMENTATION

Our system builds upon the open-source Nemo [13] frame-
work, incorporating enhancements to the encoding and de-
coding functions within libvpx [18] for the VP9 codec [19].
For neural network operations, we utilize the TensorFlow Lite
framework [31], chosen for its efficiency and compatibility
with mobile platforms. The video data are stored in the YUV
format. For neural network processing, we convert the video
frames from the YUV420 format to the RGB888 format.

To better preserve the quality of core frames while improv-
ing video processing efficiency, we adopt an approach similar
to BiSR [16], where high-resolution frames are separately
stored as a video segment and transmitted alongside the
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TABLE I: Information of Mobile Devices

Devices Processor SR Latency

Google Pixel 5 Snapdragon 765 1157ms
Huawei P40 Pro Kirin 990 487ms

Vivo X100 Dimensity 9300 114ms

low-resolution video. Specifically, this high-resolution video
segment contains only core frames while maintaining the
original bitrate of high-resolution video. After transmission to
mobile devices, these high-resolution frames are prioritized for
decoding to accommodate reference-based decoding methods.

V. EVALUATION

A. Experiment Setting

Mobile Devices: To assess our system’s performance, we
conducted experiments on three smartphones with varying
hardware configurations. These were the Google Pixel 5, the
Huawei P40 Pro, and the Vivo X100. Table I highlights the
specification details of these devices.

Video Dataset: For our experimental setup, we curated a
collection of 18 videos from YouTube, representing a diverse
range of content types that are popular among viewers [32],
[33]: Product Reviews (C1), Video Tutorials (C2), Vlogs (C3),
Gaming (C4), Music (C5), and Reviews (C6). Each video is
in high-quality 4K (2160p) 30fps format using the VP9 codec,
and we extracted five minutes from each for the experiment.

To assess the performance of our system under various
conditions, we downscale each video to {240p, 360p, 480p,
540p, 720p, 1080p}, and set the bitrates respectively at {512,
1024, 1600, 2000, 2640, 4400} kbps. Unless specified other-
wise, by default, we use a 540p video upscaled to 2160p for
experiments, with the 4K video serving as the reference for
video quality. In the experiments, the GOP (Group of Pictures)
is set to 120, and the chunk length is 4 seconds.

Baseline: We compared our system with three methods:
• Origin: We do not perform any additional operations, sim-

ply decoding video frames normally and using bilinear
interpolation to generate SR decoded frames.

• Nemo [13]: Due to space limitations, we conducted
experiments using the high-quality neural network model
described in Nemo.

• Neuroscaler [14]: Neuroscaler is a video streaming sys-
tem designed for live streaming scenarios. In our experi-
ments, we used Neuroscaler’s anchor frame selection and
decoding modules. We conducted tests using the same
neural network as Nemo.

DNN Setting: To ensure a fair comparison environment,
we adjusted the complexity of our neural network to guar-
antee a computational latency similar to that of the neural
network used in NEMO [13] (within plus or minus 10% and
measured by AI-benchmark [34]). For DNN training, we set
λ1 = 1, λ2 = 8, λ3 = 1. In our experiments, unlike NEMO
[13] and BiSR [16], which dynamically adjust the size of the
neural network, we fix the complexity of the neural network
to facilitate a more equitable comparison.

B. Main Results

In our initial evaluations, we focused on the effects of
quality enhancement across a range of videos, standardizing
the conditions by setting the video stream to 540p at 2000
kbps. Fig. 8a shows the result of the quality of the video
with a consistent decoding throughput of 30 fps, using various
upscaling methods. Our approach markedly surpassed both
Nemo and Neuroscaler in enhancing video quality in all tested
categories. Compared to Nemo, there was an improvement in
video quality of 3.32 - 4.54 dB in different video categories.

In our comprehensive tests across a range of transmission
resolutions, we evaluated the performance of our upscaling
method by restoring videos from lower resolutions (240p,
360p, and 480p) to 1080p and higher resolutions (540p,
720p, and 1080p) to 2160p (Fig. 8b). Our findings clearly
demonstrate that our method consistently delivers significant
enhancements in video quality across all tested resolutions
(5.22-8.81 dB compared with the origin). In particular, the
improvements became more pronounced as the scale between
the original resolution and the target was increased.

For different devices, we used the same neural network and
adjusted the number of anchor frames to ensure consistent
throughput maintained at 30fps for testing. Our experiments
demonstrate that regardless of the level of the device used, our
method exhibits significant superiority. For devices with higher
computing power, our algorithm performs better. Greater com-
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puting power means that more neural networks can be used,
thus better unleashing the potential of our neural networks.

We conducted tests under real network conditions from
broadband [35], HSDPA mobile network datasets [36] and
4G network trace in Lumos5G [37] dataset. As the design of
our system is orthogonal to ABR algorithm optimization, we
selected a fixed ABR method for this experiment to evaluate
the performance of our system. We used Pensieve [9] as the
ABR method. In the baseline scenario (Pensieve), we did not
apply SR, transmitting the video directly. In other scenarios,
we optimized the transmission of LR videos and applied SR
for mobile-side enhancement. We conducted a comparative
analysis using the average Quality of Experience (QoE) for
each video category using the Pensieve method as a baseline.

To assess the impact of our system comprehensively, we
adopted a widely recognized definition of Quality of Experi-
ence (QoE) [27], [38] as follows:

QoE =
1

N
(α

N∑
n=1

q(Rn)− β

N∑
n=1

Tn

− γ

N−1∑
n=1

∥q(Rn+1)− q(Rn)∥),

(9)

where N is the number of video chunks, Tn is the rebuffer
time, Rn is the bitrates, and the q(Rn) is the utility of the
chunk n. Additionally, we employed structure similarity index
measure (SSIM) [39] to estimate the utility of videos that have
undergone SR processing [27]. We set α = 1, β = 4.3, γ = 1
for broadband and HSDPA mobile network datasets, and
set α = 1, β = 20, γ = 1 for Lumos5G dataset. The
results, depicted in Fig. 9a, unequivocally demonstrate the
superior performance of our system. In broadband and HSDPA
datasets, our method achieved improvements of 76.9% and
29.6% respectively compared to the vanilla Pensieve and
Nemo approaches. On Lumos5G, while the enhancement
effects of video frames were relatively less pronounced due
to higher network speeds supporting low-resolution videos at
higher frame rates, our method still demonstrated significant
improvements of 38.5% and 15.3%.

C. Ablation Study

We assessed the contributions of three pivotal modules:
Neural Downscaling, Hierarchy Codec & Joint Selector, and
Ref-based Decoder. This analysis was framed against the

backdrop of the existing Nemo [13] system to gauge relative
performance improvements. Our findings reveal each part of
the design benefits the performance of the system.

We evaluate the neural network architectures within our
video streaming system. All experiments use exactly the same
settings except for the downsampling neural network. Fig. 10b
indicates that our downscaling architecture based on invertible
neural networks is beneficial for overall video enhancement,
showing a 1.3 dB improvement in video quality compared to
using a simple CNN-based downscaling neural network.

D. Inter Loss Analysis

In the process of our neural network training, we incor-
porated the inter-frame loss part. The design aims to make
the video frames more coherent with each other, thereby
reducing the quality decline when reusing decoded frames.
Fig. 10c shows the impact of inter-frame loss. It reduces the
video quality in per-frame SR, but improves the video quality
in Selected SR. This underscores the importance its value,
because Per-frame inference on mobile devices is inefficient.

In addition, as shown in Fig. 10d, the benefits of incorpo-
rating inter-frame loss are evident, particularly in maintain-
ing quality over time. Without this feature, the initial high-
quality anchor frame’s impact quickly diminishes, eventually
performing worse than a standard Nemo-processed frame. By
integrating inter-frame loss, we substantially curb this quality
decay, ensuring a more consistent and higher overall quality
and significantly reducing fluctuations.

VI. DISCUSSION AND FUTUREWORK

A. Codec Support

Our video streaming system is initially optimized for the
VP9 [19] codec. However, we may encounter different en-
coding methods, such as H264 [40], AV1 [41] and other
neural-based codec [42]–[45]. These codecs all use residuals
and motion vectors to store compressed video, so our Ref-
based Decoder can support them well. From an encoding
perspective, our server’s design does not depend on how each
frame is specifically encoded, but rather optimizes the content
of the downscaling process and the encoding format. Overall,
we believe that our method can easily be migrated to other
encoding methods and can be expected to achieve good results.

Some recent works propose codec design using deep learn-
ing [43]–[46]. This encoder is designed to retain superior video
quality at the same bitrates. Further consideration could be
given to the consideration of downscaling and compression
simultaneously during the neural encoding process.

B. Combined with ABR Algorithm

Our existing system operates independently of the ABR
module, suggesting that our approach can be integrated with
any existing ABR [8]–[10], [47] method to achieve improve-
ments in video quality. However, our system design leverages
cloud-based video downsampling and re-encoding processes,
while neural network-based video streaming exhibits different
quality distributions compared to conventional approaches.
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Therefore, we believe that further integration of our solution
with ABR algorithms, particularly considering the joint frame
selector’s bandwidth budget for different frame types, would
be beneficial for additional system optimization.

VII. RELATED WORK

A. Video Streaming and Adaptive streaming

Video streaming technology is a technique for continuous
transmission and playback of video data over networks. As one
of the core technologies in modern internet video transmission,
it is extensively deployed in various video scenarios, including
drone perception and video processing [48]–[50], vehicular
perception and video analysis [51], and media video playback
[13], [14], [16]. Through technologies such as video segmenta-
tion, continuous transmission, and adaptive bitrate streaming,
video streaming technology can optimize bandwidth utilization
and meet the requirements for real-time video interaction or
analysis.

Adaptive bitrate streaming is one of the core technologies
in video stream transmission and is designed to optimize user
viewing experiences and adapt to fluctuating network condi-
tions [6], [7], [52]. Each video is segmented into chunks and
encoded at various bitrates and resolutions, creating multiple
versions. Mobile devices, such as smartphones, are equipped
with an adaptive bitrate (ABR) algorithm [8]–[10], [47] to
dynamically adjust the quality of the streaming.

Our system’s approach to optimizing video quality is or-
thogonal to that of adaptive streaming. Therefore, our method
uses computational resources on the mobile side to further
enhance service quality beyond adaptive streaming.

B. Super Resolution (SR)

SR technology often utilizes neural network techniques to
enhance the resolution of images or videos [11], [28], [53].
It involves processing LR content and generating versions of
higher resolution than the input images or videos. Due to
the inherent requirement to process larger resolution feature
layers, real-time applications on mobile devices encounter
significant trade-offs between computational efficiency and
enhancement quality [11], [12].

SR fundamentally addresses an ill-posed problem: Multiple
HR results can be downscaled to the same LR image [53], [54].
Therefore, with the presence of ground truth for upscaling,
some researchers have explored the strategy of executing the

downscaling process with neural networks, which are then
jointly trained with upscaling networks [24], [28]. However,
these approaches have not yet been optimized for mobile
devices, nor have they been re-designed for video streaming
services.

C. Neural-enhanced Video Delivery System

The primary paradigm for neural-enhanced video delivery
systems involves transmitting low-resolution content, followed
by enhancement on the mobile side through super-resolution
models. This approach utilizes mobile computing resources
and opens a new dimension in scheduling space.

Researchers are exploring the use of neural networks to
enhance video stream quality in various domains, including
on-demand video streaming [13], [16], [27], live streaming
[14], 360◦ panoramic videos [55], volumetric videos [15]
and video conference [56]. In the domain of on-demand
streaming, NAS [27] enhances quality frame-by-frame using
a lightweight DNN. NEMO [13] suggests performing neural
network enhancements only on a subset of frames. BISR [16]
involves super-resolving only the first frame of the chunk while
maintaining the other frames at a higher resolution. However,
this method does not fully utilize mobile-side resources and
is not compatible with existing CDN infrastructures.

VIII. CONCLUSION

In this paper, we present DoMo, the first work to re-
think and unleash the potential of mobile-side video super-
resolution from the cloud perspective. DoMo enhances video
quality through a closed-loop neural-enhanced on-demand
video streaming system. Extensive evaluations demonstrate
that our system achieves improved video quality, QoE, and
power consumption performance.
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