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Abstract—IPv6 target generation is crucial for surveying
the vast IPv6 address space, which is essential for network
management and IPv6 deployment policies. However, existing
techniques often suffer from low hit rates due to ineffective
space partitioning caused by outlier addresses and limitations
in current outlier removal algorithms. To address these chal-
lenges, we propose 6Loda, a novel approach that combines
pattern filtering and ensemble learning to efficiently remove
outlier addresses and discover active IPv6 addresses. Given a
set of known active addresses, 6Loda first employs a pattern-
based filter to preliminarily eliminate some outlier addresses.
It then utilizes a two-level (divisive hierarchical clustering) DHC
algorithm to partition the seed set and applies the Loda algorithm
to automatically remove remaining outliers in address spaces.
Finally, 6Loda implements the random generation algorithm to
produce addresses with high hit rates. Experiments conducted
on large-scale datasets demonstrate that 6Loda achieves a ×2.26
improvement in hit rate compared to state-of-the-art methods,
while maintaining the same budget constraints.

Index Terms—IPv6 scanning, ensemble learning, target gener-
ation algorithm, outlier detection.

I. INTRODUCTION

The rapid proliferation of internet-connected devices and the
exhaustion of IPv4 addresses have necessitated the widespread
adoption of IPv6 in recent years [1]. This transition is evident
in the increasing utilization of IPv6, with Google reporting that
over 30% of its users accessed services via IPv6 as of July
2021 [2]. The expansive IPv6 address space, encompassing
2128 unique addresses, effectively mitigates the limitations of
address scarcity and accommodates the burgeoning demand for
a diverse array of internet connectivity, such as LPWAN [3],
WLAN [4], TSN [5], software-defined network [6] and video
streaming network [7]. As IPv6 adoption continues to accel-
erate among organizations and end-users, the imperative to
comprehend and monitor this vast address space has become
paramount. Comprehensive surveying of the IPv6 address
space is critical for various aspects of network operations [8].

In methods for surveying address spaces, traditional active
scanning techniques have proven highly effective in the IPv4
address space, which is limited to 232 addresses. For instance,
zmap [9] can complete a scan of the entire IPv4 address space
within hours. However, the vastness of the IPv6 address space
presents significant challenges for active scanning method-
ologies. Active scanning necessitates probing each potential
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IPv6 address to determine its status, but given the enormous
number of possible IPv6 addresses, employing such a brute-
force approach for a comprehensive scan is impractical. It has
been estimated that a complete scan of the entire IPv6 address
space using traditional brute-force methods would require
millions of years [10]. This estimated timeframe underscores
the inefficiency and infeasibility of applying traditional active
scanning methods in an IPv6 environment.

To address the limitations of traditional scanning techniques,
researchers have developed more efficient methods for survey-
ing the IPv6 address space. One particularly effective approach
is the Target Generation Algorithm (TGA). The core process
of TGA comprises three main steps:

1) Clustering the existing IPv6 dataset (commonly referred
to as seeds) according to specific patterns, thereby
partitioning the addresses into various clustered spaces.

2) Within each clustered space, predictively generating
potential IPv6 addresses using techniques such as prob-
abilistic statistics and machine learning.

3) Employing testing tools to verify the existence of the
generated addresses, thus efficiently identifying active
IPv6 addresses within the global IPv6 address space.

In contrast to exhaustive scanning of the entire address space,
TGA aims to generate a subset of potentially active new
addresses based on observed patterns and behaviors in IPv6
address allocation and usage. This approach significantly nar-
rows the probing range and accelerates the scanning process.
The TGA method substantially reduces the time and compu-
tational resources required for scanning, rendering it a more
viable option for large-scale IPv6 surveys. For IPv6 addresses,
the divisive hierarchical clustering (DHC) algorithm and its
variants, which construct a space tree from top to bottom, have
been demonstrated to be highly efficient clustering algorithms.
These algorithms have been widely adopted in related TGA re-
search works, such as 6Hit [11], 6Tree [12], and 6Forest [13].

However, TGA’s performance is significantly influenced by
the quality of the seed set. Suboptimal seed quality can result
in ineffective clustered spaces, thereby substantially reducing
the hit rate. This issue primarily stems from the presence of
outlier addresses within the seed set, which adversely affect
classification efficacy. An outlier address is defined as one that
markedly differs from the majority of other addresses within
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Fig. 1. An example of the impact of outlier addresses on address space partition, where the yellow nibble position is the fork point of the address space tree
and the red address is the outlier address.

a clustered space, or exists as a unique address within that
space. Fig. 1 illustrates this concept: due to the presence of
outlier address 1 in the seeds, schemes such as 6Hit, 6Tree, and
6Forest inappropriately partition the parent-node address space
into four sub-node addresses. The second and fourth sub-node
address spaces, each containing a single unique address, lack a
variable nibble dimension. This absence precludes TGA from
generating predictions for potential addresses. Conversely, the
first and third sub-node address spaces, erroneously generated,
possess an exploration space (defined as the exponential of
the variable nibble dimension) significantly larger than the
optimal partition that would result from excluding outlier
addresses. This leads to an excessive expansion of the TGA-
predicted address space. Consequently, within a finite number
of prediction steps, the hit probability for predicted addresses
in the former scenario will be substantially lower than in
the latter. In essence, outlier addresses result in incorrect
address space partitioning and an increase in the variable
nibble dimensions of the address space.

To mitigate this issue, 6Forest incorporates an outlier re-
moval algorithm based on isolation forest, aiming to minimize
the dimensions of the final exploration space. For a set of
addresses in an address space classified by DHC, this method
constructs a depth-limited isolation tree in each free nibble
dimension. These trees split and score addresses, with more
isolated addresses receiving higher scores. Addresses with
cumulative scores exceeding a predetermined threshold are
classified as outliers. However, the efficacy of this approach is
heavily dependent on the selection of an appropriate threshold
and the quality of the initial seed set. Fig. 2 demonstrates
how 6Forest generates different sub-node address spaces under
varying threshold settings, highlighting the limitations of this
threshold-based outlier removal mechanism. This approach
requires fine-tuning and is susceptible to dataset-specific in-

fluences. Moreover, 6Hit, 6Tree, and 6Forest do not consider
the potential impact of pre-filtering addresses with a high
probability of being outliers on subsequent DHC space parti-
tioning. Pre-filtering outliers could lead to more optimal space
partitioning, as illustrated in Fig.1. The removal of outliers
prior to partitioning increases the likelihood of achieving an
ideal space partition, as demonstrated in Fig.1.
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Fig. 2. The spatial partitioning result of 6forest varies at different thresholds.

To address the impact of outlier addresses on the TGA hit
rate and to overcome the limitations of 6Forest, we propose
6Loda, a novel TGA based on pattern filtering and ensemble
learning. 6Loda employs prior knowledge to pre-filter ad-
dresses with a high likelihood of being outliers, thereby reduc-
ing the probability of misclassification by DHC. To mitigate
the effects of threshold fluctuations on outlier address removal,
we have developed an adaptive outlier removal algorithm
based on the Lightweight On-line Detector of Anomalies. This



algorithm generates sparse random projection vectors, projects
addresses into low-dimensional spaces, and utilizes histogram
density estimation in these spaces to detect and remove outlier
addresses. By integrating multiple histogram-based weak de-
tectors, 6Loda achieves robust anomaly detection capabilities.

The contributions of this paper are as follows:
• We have investigated the influence of address generation

patterns on DHC space partitioning and elucidated the
relationship between these patterns and outlier addresses,
which provides novel insights for enhancing TGA design.

• We propose 6Loda, a TGA based on pattern filtering and
ensemble learning for IPv6 scanning across the internet.
It aims to address the open problem of interference from
outlier addresses, even in the most advanced methods.
6Loda ensures performance in outlier address removal
without excessively demanding computational resources.

• We have validated the efficacy of 6Loda through exten-
sive experimentation. Results indicate that compared to
state-of-the-art methods, 6Loda achieves ×2.26 improve-
ment in the hit rate under the same budgets.

The authors have provided public access to their code at
https://github.com/SunVictor23/6Loda .

II. RELATED WORK

Due to the non-traversability of the vast IPv6 address space,
the work of IPv6 address measurement mainly focuses on
two aspects: active scanning based on seed sets and passive
collection based on network services.

In active scanning, Barnes et al. firstly hypothesized that
seeds provide information that can be used in IPv6 scanning
schemes [14], which has become the foundation for subsequent
researches [11], [13], [15]–[17]. Research on IPv6 active
scanning mainly focuses on two aspects: heuristic-algorithm-
based TGAs and machine-learning-based address generation.

Heuristic-algorithm-based TGAs utilize the structural infor-
mation of seeds to determine scanning regions, then uncover
potential IPv6 addresses within these regions. Liu et al. [12]
proposed 6Tree, using DHC to partition seeds, generating
target addresses based on the density of tree nodes. Hou et
al. [11] introduced 6Hit, which used an enhanced DHC and
was the first to apply reinforcement learning for dynamic
budget allocation. This idea is also adopted in the 6Scan [17].
Hou et al. proposed 6Graph [16], used a DHC similar to 6Hit
and leveraged graph theory to discover new addresses. They
also introduced 6Forest [13], which partitions seeds using
covering-based DHC and incorporates the isolation forest
algorithm to removal outlier addresses. To expand the scanning
coverage, HMap6 integrates a public seed set with seeds
collected under announced BGP prefixes, enabling efficient
seed collection across a wide range of BGP prefixes [18].
These TGAs focus on different aspects, aiming to improve the
hit rate by improving space partition, outlier removal, potential
address prediction and directional correction of predictions.

Machine-learning-based address generation methods at-
tempt to extract semantic information from seeds using ma-
chine learning models. These methods treat IPv6 measurement

as a special data generation task, e.g., 6VecLM [19], 6GC-
VAE [20] and 6GAN [21]. While these methods provide novel
solutions, their deep neural network requirements limit large-
scale implementation due to high computational costs.

In passive collection, methods aim to extract IPv6 addresses
from data packets sent by IPv6 devices when providing
network services to them. For instance, [22] leverages the open
NTP (Network Time Protocol) servers to passively collect IPv6
addresses from devices requiring NTP time synchronization.
The majority of collected addresses are randomized patterns
with limited lifespan, typically belonging to end hosts, which
have limited significance for IPv6 measurement tasks.

Given the computational constraints of semantic-based mod-
els and limitations of passive collection, we opt for a TGA
leveraging structural information from seed addresses for IPv6
measurement. As noted in section I, our primary focus is
mitigating the impact of outlier addresses on the TGA.

III. PRELIMINARIES

To help readers understand the IPv6 scanning task and this
paper, we will briefly introduce the IPv6 address generation
patterns, definitions of the terms used, and the mathematical
model of the TGA problem in this section.

A. IPv6 Address Generation Patterns

IPv6 addresses comprise three components: global rout-
ing prefix, local subnet identifier, and interface identifier
(IID) [23]. The IPv6 address space, with its potential size
of 2128, offers considerable structural flexibility in the IID,
enabling the use of various address generation patterns to
accommodate diverse device application requirements. RFC
7707 [24] delineates several IID generation patterns for IPv6
addresses. The main generation patterns are as follows:

• Low-byte: The IID primarily sets non-zero nibbles in the
low nibbles, e.g., 0000:0000:0000:0001.

• Randomized: All nibbles in the IID are pseudo-randomly
generated, e.g., 96f1:c6d4:4100:c76b.

• Embedded-ipv4: The lowest 32 bits or each field of
the IID embeds the IPv4 address, e.g., 192.168.2.10
can be mapped to 00c0:00a8:0002:000a or
0192:0168:0002:0010.

• Pattern-bytes: IIDs within the same prefix use
specific bytes, e.g., 0113:0000:84f8:cacb and
011b:0000:84f8:cacb.

• Ieee-derived: The device’s MAC address is mapped to an
IPv6 address, characterized by the 23rd to 26th nibbles
being fffe, e.g., 51ad:c7ff:fe2a:1d84.

• Embedded-port: The lowest nibbles of the IID embed
the device’s port number. For example, port 80 can be
mapped to 0000:0000:0000:0080.

It is important to note that while the IIDs described above are
assumed to be 64 bits in length, the actual length of the IID
may vary across different autonomous systems.

According to the statistics in the [22], core IPv6 internet
infrastructure, such as servers and routers, primarily uses ad-
dress generation patterns with low randomness, like low-byte,



to facilitate network administration and asset management. In
contrast, end host addresses more frequently adopt randomized
patterns to enhance user privacy and prevent address tracking.

B. Definitions

1) Definition 1: Seed. The TGA starts with an actual
dataset of IPv6 addresses to discover new addresses. These
active IPv6 addresses in the dataset, used as starting points,
are referred to as seeds. The dataset consisting of all seeds is
denoted as S, and the number of seeds is denoted as |S|,
where | · | denotes the operation of counting the number
of elements in the set. Generally, seeds are IPv6 addresses
actually used by internet devices in reality, and their validity
can be tested through someone protocols such as ICMPv6,
TCP/80, TCP/443, UDP/80, and UDP/443.

2) Definition 2: Address space. The seeds in the dataset
are partitioned into small seed clusters according to certain
rules, where the seeds in each cluster have similar structural
information. Such a cluster is referred to as an address space.
An address space with only one seed has no variable nibbles
and cannot guide the generation of potential addresses, and
is typically discarded. The m address spaces partitioned from
the seed set S are denoted as Si, i = 1, ...,m.

3) Definition 3: Variable nibble dimension. When an IPv6
address is represented in nibble form, it has 32 dimensions,
with each dimension taking values in the range [0x0,0xf ]. If
the seeds in a particular address space take different values
in one nibble dimension, that dimension is considered as
a variable nibble dimension. In this paper, we use ”∗” to
represent a variable half-byte dimension.

4) Definition 4: Outlier address. Typically, if an address
in an address space is significantly different from the majority
of other addresses or if there is a unique address in the address
space, that address is considered an outlier address.

5) Definition 5: Exploration space. For the addresses in
an address space, all potential addresses generated by varying
the values of the variable nibbles with different structural
information constitute the exploration space.

6) Definition 6: Potential Address. The addresses pre-
dicted by the TGA from the exploration space are referred
to as potential addresses. These addresses can be verified for
existence using address scanning tools such as zmap v6.

7) Definition 7: Budget. The required number of potential
addresses is refer to as budget, denoted as b in this paper.

It should be noted that, for convenience, all IPv6 addresses
are represented using 32 nibbles in this paper. All metrics
involving address lengths refer to the length in nibbles.

C. Mathematical Modeling of the TGA

Without loss of generality, the TGA problem requires the
algorithm τ to predict a set of potential addresses τ(S, b) based
on a given seed dataset S and a given budget b. Assuming the
set of all active IPv6 addresses in the real world is A, the
TGA problem can be formulated as an optimization problem:

maxH(τ, S, b) =
|τ(S, b) ∩A− τ(S, b) ∩ S|

|τ(S, b)|
, (1)
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where τ(S, b)∩A represents the portion of predicted addresses
that are actually active in the real world, which can be obtained
by using existing IPv6 tools to test τ(S, b). The part subtracted
in the numerator means that the generated targets should
exclude the known seeds. H(τ, S, b) can also be defined as
the hit rate of generated IPv6 addresses.

IV. DESIGN OF 6LODA

In this section, we first introduce the overview of 6Loda.
Then, we describe the design details of each key module of
6Loda, including the pattern-based filter, space partition mod-
ule, outlier detection module, and Address discovery module.

A. System Overview

Fig. 3 depicts the primary workflow of 6Loda. The al-
gorithm initiates by identifying address generation patterns
within the seed set. Based on empirical observations, 6Loda
eliminates addresses exhibiting randomized and ieee-derived
patterns, as these are highly probable outliers. Subsequently, a
two-level DHC algorithm, leveraging generation patterns and
max-covering principles, iteratively partitions the filtered seed
set into distinct address spaces. The Loda algorithm is then
applied to each address space to detect and remove potential
outlier addresses. Finally, 6Loda employs an address discovery
module to predict potential addresses within the exploration
space corresponding to these address spaces, validating their
existence through address scanning tools.

B. Pattern-based Filter

Insight: addresses generated using randomized and ieee-
derived patterns are more likely to be outlier addresses, which
are not conducive to address generation.

IPv6 address generation follows specific patterns as outlined
in section III-A, providing a foundation for investigating
IPv6 classification methodologies. Analysis of address pattern



Fig. 4. The histogram of variable nibble dimensions of address spaces for
each address generation pattern. The horizontal axis represents the number
of variable nibble dimensions, the vertical axis represents the corresponding
number of address spaces, and the title represents generation patterns.

characteristics in a large-scale seed set revealed that addresses
generated under different patterns result in exploration spaces
of varying sizes after space partitioning. The size of these ex-
ploration spaces strongly correlates with hit performance [25].
Experiments were conducted using an IPv6 Hitlist containing
1 million seeds [26]. The distribution of generation patterns
in this dataset was as follows: low-byte (61.94%), randomized
(16.37%), embedded-ipv4 (14.53%), pattern-bytes (2.74%),
ieee-derived (2.46%), and embedded-port (1.96%). Further
experimental details will be presented in section V-A. The
variable nibble dimensions of address spaces obtained after
applying the covering-based DHC algorithm for space parti-
tioning were analyzed for each generation pattern. The results
of this analysis are illustrated in Fig. 4.

The analysis reveals that both randomized and ieee-derived
generation patterns exhibit a substantial proportion of address
spaces with high variable dimensions. Specifically, in the
randomized pattern, 61.89% of address spaces demonstrate
variable dimensions exceeding 7, while in the ieee-derived
pattern, this percentage is 53.64%. A variable dimension
surpassing 7 indicates that the number of scannable IPv6
addresses within a single exploration space can reach or
exceed 168 = 232, which is equivalent to the total upper
limit of IPv4 addresses. Furthermore, these elevated variable
dimensions suggest a heightened probability of outlier address
occurrence. This is because addresses within the same address
space exhibiting high variable dimensions indicate significant
heterogeneity at these positions, potentially leading to the

classification of all addresses as outliers.
Based on the above analysis, we can believe that addresses

with randomized and ieee-derived generation patterns can be
considered outliers. Retaining these addresses for address gen-
eration is more detrimental than beneficial. For IPv6 address,
directly discarding them is a highly efficient strategy. Given
the abundance of seeds, the discarded seeds are insignificant
compared to the vast IPv6 address space, and we need not
worry about the value of these discarded seeds in discovering
more active IPv6 addresses. Therefore, we first designed
a pattern-based filter, which utilizes the IPv6 Toolkit [27]
to identify generation patterns and remove addresses with
randomized and ieee-derived patterns.

Remark: For datasets that contain too many seeds with ran-
domized or ieee-derived patterns, we propose the application
of alternative TGA specifically to these seeds. However, such
an approach falls outside the purview of the present study.

C. Space Partition Module

The standard DHC algorithm begins with a complete seed
set and iteratively partitions the parent-node address space into
sub-node address spaces, starting from the leftmost variable
dimension. The iteration stops when the sub-node spaces meet
certain threshold requirements. Empirical evidence suggests
that DHC algorithms generally outperform agglomerative hi-
erarchical clustering (AHC) algorithms [11], [12], [28]. This
superiority is attributed to two main factors: firstly, AHC
algorithms necessitate a priori specification of cluster numbers,
which is often impractical for large seed sets; secondly, the
computational complexity of AHC algorithms varies between
O(nlogn) and O(n2) depending on the clustering method,
whereas DHC algorithms and their variants consistently main-
tain an O(nlogn) complexity, rendering them more scalable
for large-scale seed sets [17].

We designed a two-level DHC algorithm for space partition,
capitalizing on the superior performance of DHC algorithms.
The first level classifies seeds by their generation patterns,
which is efficient and prevents misclassification of addresses.
This approach aligns with the assumption that servers for a
website likely have IPv6 addresses generated using the same
pattern. This initial classification achieves efficient preliminary
space partition and can be integrated with the pattern-based
filter described in Section IV-B, allowing for more refined
DHC on addresses with specific patterns.

In the second level, we employ the covering-based DHC
proposed by 6Forest to partition seed subsets for each gener-
ation pattern. Unlike the original DHC’s left-to-right splitting
order, which fragments address spaces (Fig. 5), the covering-
based DHC splits from the least “chaotic” position among
variable nibble dimensions. This approach minimizes the
number of unique address spaces generated after each split by
comparing the covering of all variable nibbles. For K seeds to
be split, with Vi as the vector of variable nibbles in the i− th
dimension, the covering Coveri is defined as:

Coveri =
Σ15

j=0,|Vi==j|>1|Vi == j|
K

, (2)
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where |Vi == j| > 1 ensures that we focus on the non-unique
nibbles in the variable nibble dimensions during the splitting
process, and the denominator K is used for normalization.
Coveri indicates that the fewer unique nibbles there are
in the current variable dimension, the lower the likelihood
of generating address spaces with unique addresses when
splitting in that dimension, as shown in Fig. 5.

The complete pseudocode for the two-level DHC is shown
in Alg. 1, where GetPattern() is used to obtain the
address pattern and can be parsed using the RFC tools men-
tioned in section IV-B. The covering-based DHC is detailed
in [13], and will not be reiterated here. In terms of complexity,
since the complexity of RFC parsing is O(1) and can be
incorporated into section IV-B, the complexity of the two-level
classification is mainly determined by covering-based DHC.
If n seeds are used for address space partition, the worst-
case time complexity of the two-level DHC is O(nlogn);
leveraging the FIFO data structure in covering-based DHC,
the space complexity can be achieved at O(n).

D. Outlier Detection Module

Although we filter out addresses that are highly likely to be
outliers using the pattern-based filter and partition the other
seeds, this does not solve the problem of exploration space
inflation caused by the remaining unfiltered outlier addresses.
Therefore, in this section, 6Loda employs Loda [29] to further
filter out outlier addresses from the address space. This algo-
rithm uses sparse random projections to reduce dimensionality,
then applies histogram density estimation for anomaly scoring
and outlier removal. Multiple histogram-based weak detectors
are combined for robust anomaly detection.

We can assume that outlier addresses have unique nibbles in
most variable nibble dimensions, allowing them to be isolated
or detected first. This assumption underlies all outlier removal
algorithms and is also accepted in 6Loda.

For n seeds {xi}ni=1 in an address space, where xi ∈
N(0, 15)32, 6Loda first randomly generates k sparse projection

Algorithm 1 Space partition
Require: the seed set S after pattern-based filtering, the seed

number threshold β in final address space
Ensure: the set of final address space ϕ

1: Initialize an empty set ϕ
2: Initialize an empty dictionary patternDict
3: for each seed in S do
4: pattern = GetPattern(seed)
5: if pattern not in patternDict then
6: patternDict[pattern] = []
7: end if
8: patternDict[pattern].append(seed)
9: end for

10: for each pattern in patternDict do
11: Si = patternDict[pattern]
12: results = coveringDHC(Si, β)
13: ϕ.update(results)
14: end for
15: return ϕ

vectors {ωj}kj=1, with any element in ωj following N(0, 1).
The projection vector ωj projects the sample x ∈ {xi}ni=1

onto a one-dimensional space Hj , with the corresponding
projection value being zj = ωT

j x. For each projection vector
of {ωj}kj=1, we can construct a one-dimensional histogram hj

for the projection values of all samples. If we assume that the
probability estimate of sample x in histogram hj is p̂i(ω

T
j x),

the anomaly score of the sample can be written as:

f(x) = −1

k

k∑
j=1

log p̂i(ω
T
j x). (3)

If the probability estimate p̂i(ω
T
j x) of sample x in a certain

projection direction is very low, then log p̂i(ω
T
j x) will be a

large negative number, thereby increasing the anomaly score
f(x). By performing multiple projections, f(x) will integrate
information from multiple projection directions. If sample x
has low probability density in several projection directions,
f(x) will be high, indicating that the sample is anomalous.
Additionally, the Eq. 3 can be reformulated as:

f(x) = − log

(
k∏

i=1

p̂i(ω
T
j x)

) 1
k

= − log p̂(ωT
1 x, ω

T
2 x, ..., ω

T
k x),

(4)

where p̂(ωT
1 x, ω

T
2 x, ..., ω

T
k x) is the joint probability of the

projections. This equation demonstrates that the anomaly score
is inversely proportional to the logarithm of the sample’s likeli-
hood. Consequently, samples with lower likelihood values are
assigned higher anomaly scores, which is consistent with the
fundamental principle of anomaly detection. This relationship
provides a quantitative basis for identifying outliers or unusual
observations within the dataset.

The complete pseudocode for the outlier detection module
is shown in Alg. 2, where getOutlierScore() calculates
the anomaly score of the input address according to Eq. 3, and



Sort() sorts the address data structure in descending order of
values. In this algorithm, two parameters must be determined:
projection vectors {ωj}kj=1 and number of histogram bins b̂.

Algorithm 2 Outlier detection
Require: address space Si, outlier ratio α, b bins for his-

tograms
Ensure: address space S̄i after removing outliers

1: Initialize k projection vectors {ωj}kj=1

2: Initialize k empty histograms {hj}kj=1

3: Initialize outlier scores dictionary O
4: Initialize address space S̄i after removing outliers
5: for each ωj in {ωj}kj=1 do
6: for each x in Si do
7: hj .add(ωT

j x)
8: end for
9: end for

10: for each x in Si do
11: O[x] = getOutlierScore(x, {hj}kj=1)
12: end for
13: num outliers = Round(α× |Si|)
14: O = Sort(O)
15: keys = List(O.keys())
16: S̄i = keys[num outliers : end]
17: return S̄i

Generate sparse projection vectors. The original Loda
algorithm recommends that each sparse projection vector
randomly selects γ =

⌈
32

1
2

⌉
= 6 non-zero features, with each

non-zero feature randomly sampled from N(0, 1). By using
multiple sparse random projections, the data can be projected
into diverse sub-spaces, thereby increasing the diversity of
histograms. This technique is also used in algorithms such
as random forests [30].

Determine the number of histogram bins. For the number
of bins b̂ in an equal-width histogram, a simple method
to determine b̂ is suggested in [31], which maximizes the
following penalized maximum likelihood:

b̂∑
i=1

ni log
b̂ni

n
− [b̂− 1 + (log b̂)2.5], (5)

where ni is the number of samples falling into the i − th
bin, and [b̂ − 1 + (log b̂)2.5] prevents having too many bins.
In 6Loda, due to the large number of address spaces and the
limited number of addresses in each space, 6Loda sets a fixed
number of bins to maintain precision (e.g., b̂ = 10).

Remark 1: Complexity analysis. The main computational
cost of the outlier detection module lies in sample projection
and histogram statistics. The time complexity is O(nkγ),
where n is the number of seeds in the current address space, k
is the number of histograms, and γ is the number of non-zero
features in the random projection vectors.

Remark 2: Online update. 6Loda’s histogram-based
statistics allow for online updates. After outlier removal, newly
discovered IPv6 addresses can be added to the address space,

further updating the histograms, enhancing 6Loda’s ability to
remove some stubborn outlier addresses.

E. Address Discovery Module

The address discovery module performs two key functions:
generating and testing potential addresses. Generating involves
sampling the exploration space derived from the address space
according to specific rules. Testing utilizes scanning tools
to verify the existence of generated addresses. As noted in
section IV-A, 6Loda prioritizes efficient outlier removal over
address generation, eschewing multi-round directional adjust-
ments [11] for higher hit rates. Consequently, 6Loda adopts
a static scanning strategy similar to 6Forest. Specifically,
6Loda’s prototype implements a single-step static scanning
algorithm named the random generation algorithm, which is
also adopted by TGAs such as 6Graph and 6Forest. Since
the algorithm used in those TGAs has not been open-sourced,
we have implemented our version of the random generation
algorithm based on the random generation concept in 6Forest.
The algorithm samples the address space at the particular
variable nibble dimensions, generating a specified number of
potential addresses within the budget.

The pseudocode for the random generation algorithm
is shown in Alg. 3, where GetVariableDimension()
is used to obtain the variable nibble dimensions from a
given address space; RandomChooseSeed() is used to
randomly choose one seed from a given address space;
RandomChooseIndex() is used to randomly choose one
dimension from the variable nibble dimensions. In the al-
gorithm, each sampling only modifies one nibble, so each
variable nibble dimension can be sampled at most 16 times.

Algorithm 3 Random generation
Require: address space Si, budget bi
Ensure: generated address space Pi

1: Initialize the list of variable nibble dimensions indexes
2: Initialize the set of generated address space Pi

3: indexes = GetVariableDimension(Si)
4: max gen number = 16× len(indexes)− len(Si)
5: count = 0
6: while count < bi and count < max gen number do
7: seed = RandomChooseSeed(Si)
8: index = RandomChooseIndex(indexes)
9: seed[index] = Str2Hex(randint(0, 15))

10: if seed not in Si and seed not in Pi then
11: Pi.append(seed)
12: count← count+ 1
13: end if
14: end while
15: return Pi

The budget allocation is proportionally distributed according
to the number of seeds in different address spaces. For the m



address spaces [S1, S2, ..., Sm], when the total budget is b, the
budget allocated to each address space bi is:

bi =

⌈
|Si|∑m

k=1 |Sk|
· b
⌉
, i = 1, ...,m, (6)

where rounding up ensures that each address space is probed at
least once, thereby maintaining compatibility with subsequent
expansion algorithms. We cannot abandon the exploration of
an address space simply just because it has a small number of
seeds and a limited budget; what if this address space has a
higher density of active addresses? The excess budget resulting
from rounding up does not exceed m, and in large-scale IPv6
scanning, usually m≪ b.

After obtaining the potential addresses, 6Loda uses zmap to
test potential addresses, which scans potential addresses using
various protocols or ports.

V. EVALUATION

In this section, we present our experimental setup, all exper-
imental results, and analyses to demonstrate the superiority.

A. Experimental Setup

1) dataset: The seed datasets used in this paper are all
public datasets, as follows:

• C1: IPv6 Hitlist 1M. An open-source dataset provided by
Gasser et al., aimed at creating a comprehensive list of
active IPv6 addresses, incorporating results from multiple
public address sets and updating daily. We selected the
probing results from May 4, 2024, to May 10, 2024. This
dataset contains a total of 24.5 million addresses, from
which we selected the top 1 million addresses as C1.

• C2: Cisco Umbrella Websites [32]. An open-source do-
main dataset released by the Cisco Umbrella on May 10,
2024. We selected the top 9000 active addresses as C2.

• C3: Zone Files for Several Top-Level Domains [33].
Zone files provided by ICANN for top-level domains,
containing DNS records.We selected 630 IPv6 addresses
from the AAAA records in top 100 domain files as C3.

The datasets contain IPv6 addresses of servers. To ensure seed
validity, we conducted zmap tests on all datasets, retaining
only active IPv6 addresses as seeds for subsequent experi-
ments. All datasets underwent these validity tests offline in
advance to ensure fair performance comparisons.

2) Baseline: Since 6Loda focuses on efficiently removing
outlier addresses, we selected 6Forest, which also addresses
this issue, as the baseline. 6Forest represents the state of the
art in this area. As 6Forest has only released the code for
space partitioning and outlier detection, to ensure fairness, we
used the address discovery module described in Section IV-E
to generate new addresses in both systems.

3) Evaluation Metrics: The evaluation metrics selected in
this paper include the hit rate of predicted addresses and the
removal rate of outlier addresses, described as follows:

• Hit rate: the hit rate is the proportion of potential
addresses that are active in the physical world. Its mathe-
matical definition is given by H(τ, S, b) in section III-C.

TABLE I
EXPERIMENTAL RESULTS OF 6LORA AND 6FOREST

Seed 6Forest 6Loda

set Budget R H R H

C1 50M 15.64% 5.02% 34.42% 11.34%
C2 450k 47.43% 73.84% 52.32% 66.52%
C3 31.5k 13.65% 24.31% 25.87% 25.48%

• Removal rate: the removal rate is the proportion of
outlier removed by the TGA relative to the seed set.
Although the TGA cannot guarantee that the removed
addresses are indeed outliers, we believe this metric can
partly reflect TGA’s sensitivity to address heterogeneity .
Its mathematical definition is as follows:

R(τ, S, b) = 1−
⋃m

i=1 S̄i

S
, (7)

where S̄i, i = 1, · · · ,m are the address spaces returned
after outlier removal by the Alg. 2.

B. Analysis of Experimental Results

All experiments were conducted on a Linux server equipped
with an AMD Ryzen 9 5950X 16-Core processor. To ensure
consistency and control, all experiments were executed using
a single thread. For the IPv6 internet scans, the scanning rate
of zmap was strictly limited in accordance with the internet
citizenship guidelines proposed by Partridge and Allman [34],
ensuring rigorous adherence to ethical scanning practices. All
experiments were repeated 10 times, and the averages were
calculated as the final results to ensure fairness.

1) Performance: We first compared the performance of
6Loda and 6Forest on different datasets. The final experimental
results are shown in Tab. I. 6Loda shows comparable per-
formance to 6Forest on small-scale datasets but demonstrates
superior results on large-scale datasets. For example, on C1,
6Loda’s hit rate is 2.26 times that of 6Forest. The Loda
algorithm’s performance in 6Loda is based on probability
density statistics for outlier detection. On small-scale datasets,
statistical distortion can occur due to the limited seeds, affect-
ing 6Loda’s performance. However, as the seeds increases in
larger datasets, the advantages of statistical analysis become
more apparent, resulting in 6Loda’s superior performance.

Remark: It is important to note that the budget ceiling
is set at 50 times the number of seeds. This is because, as
pointed out in [13], when the variable nibble dimension does
not exceed 3, full scanning is a more efficient and rewarding
choice. Therefore, when the variable nibble dimension does
not exceed 3, a budget of 50 times is sufficient for the
random generation algorithm to toggle a variable nibble to any
number in [0x0, 0xf ] while keeping the other variable nibbles
unchanged (i.e., 15 × 3 = 45 < 50). Additionally, when the
exploration space is limited, the allocated budget may not be
fully utilized. Therefore, only a budget ceiling is set, and the
actual budget consumed during the experiments is less than
the budget ceiling, ranging from approximately 10% to 40%
across different datasets.



To more intuitively observe the performance variations of
6Loda under different prediction steps, we visualized the
cumulative hit rate results from the zmap tests, as shown in
Fig. 6. It can be observed that the hit rates of both schemes
decrease during the scanning process, but the performance of
6Loda remains consistently higher than that of 6Forest overall.

Fig. 6. The cumulative hit rates of 6Lora and 6Forest on C1.

2) Ablation Studies: To verify the effectiveness of each
module described in section IV, we conducted ablation studies
on the C1. To clearly present the results of the ablation studies,
we refer to the content of Section IV and decompose 6Loda
into four components, naming them as follows:

• M1: Pattern-based filter;
• M2: Space partition module using the two-level DHC;
• M3: Outlier detection module based on the Loda;
• M4: Address discovery module.

For any TGAs, space partition and address discovery are
essential components. Therefore, in the ablation studies, the
absence of the M2 implies that this module uses the default
covering-based DHC. The experimental results on the C1 are
shown in Tab. II, where covering-based DHC refers to the
scheme consisting solely of the covering-based DHC algorithm
and address discovery, without removing any seeds.

TABLE II
ABLATION STUDIES OF 6LODA ON THE C1

TGA R H

Covering-based DHC 0 2.37%
6Forest 15.64% 5.02%

M3+M4 24.01% 3.12%
M1+M3+M4 19.40% 8.79%
M1+M2+M4 18.87% 8.47%
M2+M3+M4 24.01% 3.75%

6Loda: M1+M2+M3+M4 34.42% 11.34%

The results indicate that the complete 6Loda achieves the
highest hit rate. The absence of any module leads to a
performance degradation. Furthermore, the presence of the M1
ensures that even an incomplete 6Loda outperforms 6Forest,
highlighting the superiority of pre-filtering address patterns.

3) Portability Analysis: To further investigate whether these
modules are portable and can potentially be used to improve
other TGAs, we take 6Forest as an example and embed the
modules of 6Loda into the 6Forest for experimentation. The
original 6Forest consists of a space partition module using
the covering-based DHC, an outlier removal module based
on the isolation forest algorithm, and an address discovery
module using the random address generation algorithm (i.e.
M4). Among these, the second module is the core of 6Forest,
and in principle, cannot be modified. Therefore, modules that
can be embedded into 6Forest only include M1 and M2. The
experimental results on the C1 are shown in Tab. III.

TABLE III
EXPERIMENTAL RESULTS OF 6FOREST EMBEDDED MODULES IN C1

TGA Removal rate Hit rate

6Forest 15.64% 5.02%
6Forest+M1 12.61% 7.56%
6Forest+M2 11.11% 3.37%
6Forest+M1+M2 27.06% 9.64%

It can be observed that the M1 can effectively improve the
hit rate of 6Forest, indicating that it has good portability. Al-
though directly introducing the M2 leads to a performance de-
cline in 6Forest, jointly introducing the M1 and M2 can further
enhance the hit rate, surpassing the performance achieved with
only M1. This improvement is due to the strict dependency
of the M2 on the M1. This dependency relationship is also
reflected in the ablation studies in Section V-B2.

VI. CONCLUSION

In this work, we illustrate the impact of outlier addresses
and address generation patterns on the effectiveness of IPv6
target generation. To address these problems, we propose
6Loda, an approach based on pattern filtering and ensemble
learning, which efficiently removes outlier addresses and dis-
covers active IPv6 addresses. 6Loda uses a pattern-based filter
to preliminarily filter out some outlier addresses, employs a
two-level DHC algorithm to partition the seed set, utilizes the
Loda algorithm to automatically remove outlier addresses in
address spaces, and uses the random generation algorithm to
generate addresses with high hit rates. Experiments on large-
scale datasets have shown that compared to the state-of-the-art
solution 6Forest in IPv6 outlier removal, 6Loda can achieve
higher address hit rates under the same budgets. Meanwhile,
our experiments also demonstrate that the modules developed
in 6Loda are portable and can be integrated into other TGAs
to enhance their performance.

ACKNOWLEDGMENT

This work is supported in part by the National Key R&D
Program of China under grant No. 2024YFC2607400, the Nat-
ural Science Foundation of China under Grant No. 62302259,
62202263, 62232004, and Tsinghua University-Fuzhou Joint
Institute for Data Technology.



REFERENCES

[1] S. Pack, X. Shen, J. W. Mark, and J. Pan, “Adaptive route optimization
in hierarchical mobile ipv6 networks,” IEEE transactions on mobile
computing, vol. 6, no. 8, pp. 903–914, 2007.

[2] Google, “Ipv6 adoption statistics,” https://www.google.com/intl/en/ipv6/
statistics.html, 2021.

[3] W. J. TONG Shuai, “Progress and challenges of lora low power wide
area networks,” Acta Electronica Sinica, vol. 52, no. 10, pp. 3623–3642,
2024.

[4] Y. Zhu, D. Zhu, G. Pan, K. Chi, and Y. Li, “Using chain of mobile
access gateway to reduce delay for pmipv6 protocol applied in wlan,”
Chinese Journal of Electronics, vol. 26, no. 5, pp. 1032–1040, 2017.

[5] Y. Zhao, Z. Yang, X. He, J. Wu, H. Cao, L. Dong, F. Dang, and
Y. Liu, “E-tsn: Enabling event-triggered critical traffic in time-sensitive
networking for industrial applications,” in 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS), 2022, pp. 691–
701.

[6] J. Zhang, F. Zhu, Z. Yang, C. Chen, X. Tian, and X. Guan, “Routing
and scheduling co-design for holistic software-defined deterministic
network,” Fundamental Research, vol. 4, no. 1, pp. 25–34, 2024.

[7] C. Qiao, J. Wang, and Y. Liu, “Beyond qoe: Diversity adaptation in
video streaming at the edge,” IEEE/ACM Transactions on Networking,
vol. 29, no. 1, pp. 289–302, 2021.

[8] R. C. Meena and M. Bundele, “A review on implementation issues in
ipv6 network technology,” Ramesh,#, Meena, C., & Bundele, M.(2015).
A Review on Implementation Issues in IPv6 Network Technology. Inter-
national Journal of Engineering Research and General Science, vol. 3,
no. 6, pp. 800–809, 2015.

[9] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in 22nd USENIX Security
Symposium (USENIX Security 13), 2013, pp. 605–620.

[10] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning
the ipv6 internet: towards a comprehensive hitlist,” arXiv preprint
arXiv:1607.05179, 2016.

[11] B. Hou, Z. Cai, K. Wu, J. Su, and Y. Xiong, “6hit: A reinforcement
learning-based approach to target generation for internet-wide ipv6
scanning,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021, pp. 1–10.

[12] Z. Liu, Y. Xiong, X. Liu, W. Xie, and P. Zhu, “6tree: Efficient dynamic
discovery of active addresses in the ipv6 address space,” Computer
Networks, vol. 155, pp. 31–46, 2019.

[13] T. Yang, Z. Cai, B. Hou, and T. Zhou, “6forest: an ensemble learning-
based approach to target generation for internet-wide ipv6 scanning,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 1679–1688.

[14] R. Barnes, R. Altmann, and D. Kerr, “Mapping the great void: Smarter
scanning for ipv6,” Proc. CAIDA AIMS-4, 2012.

[15] J. Ullrich, P. Kieseberg, K. Krombholz, and E. Weippl, “On recon-
naissance with ipv6: a pattern-based scanning approach,” in 2015
10th International Conference on Availability, Reliability and Security.
IEEE, 2015, pp. 186–192.

[16] T. Yang, B. Hou, Z. Cai, K. Wu, T. Zhou, and C. Wang, “6graph:
A graph-theoretic approach to address pattern mining for internet-wide
ipv6 scanning,” Computer Networks, vol. 203, p. 108666, 2022.

[17] B. Hou, Z. Cai, K. Wu, T. Yang, and T. Zhou, “6scan: A high-efficiency
dynamic internet-wide ipv6 scanner with regional encoding,” IEEE/ACM
Transactions on Networking, vol. 31, no. 4, pp. 1870–1885, 2023.

[18] ——, “Search in the expanse: Towards active and global ipv6 hitlists,” in
IEEE INFOCOM 2023-IEEE Conference on Computer Communications.
IEEE, 2023, pp. 1–10.

[19] T. Cui, G. Xiong, G. Gou, J. Shi, and W. Xia, “6veclm: Language mod-
eling in vector space for ipv6 target generation,” in Machine Learning
and Knowledge Discovery in Databases: Applied Data Science Track:
European Conference, ECML PKDD 2020, Ghent, Belgium, September
14–18, 2020, Proceedings, Part IV. Springer, 2021, pp. 192–207.

[20] T. Cui, G. Gou, and G. Xiong, “6gcvae: Gated convolutional variational
autoencoder for ipv6 target generation,” in Advances in Knowledge
Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD
2020, Singapore, May 11–14, 2020, Proceedings, Part I 24. Springer,
2020, pp. 609–622.

[21] T. Cui, G. Gou, G. Xiong, C. Liu, P. Fu, and Z. Li, “6gan: Ipv6
multi-pattern target generation via generative adversarial nets with
reinforcement learning,” in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications. IEEE, 2021, pp. 1–10.

[22] E. Rye and D. Levin, “Ipv6 hitlists at scale: Be careful what you wish
for,” in Proceedings of the ACM SIGCOMM 2023 Conference, 2023,
pp. 904–916.

[23] R. Hinden and S. Deering, “Ip version 6 addressing architecture,” Tech.
Rep., 2006.

[24] F. Gont and T. Chown, “Rfc 7707: Network reconnaissance in ipv6
networks,” 2016.

[25] L. Steger, L. Kuang, J. Zirngibl, G. Carle, and O. Gasser, “Target
acquired? evaluating target generation algorithms for ipv6,” in 2023 7th
Network Traffic Measurement and Analysis Conference (TMA). IEEE,
2023, pp. 1–10.

[26] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
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