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Abstract—We address the challenges in achieving optimal
Quality of Information (QoI) for non-dedicated vehicular Mobile
Crowdsensing (MCS) systems, by utilizing vehicles not originally
designed for sensing purposes to provide real-time data while
moving around the city. These challenges include the coupled
sensing coverage and sensing reliability, as well as the uncertainty
and time-varying vehicle status. To tackle these issues, we propose
QUEST, a QUality-informed multi-agEnt diSpaTching system,
that ensures high sensing coverage and sensing reliability in
non-dedicated vehicular MCS. QUEST optimizes QoI by intro-
ducing a novel metric called ASQ (aggregated sensing quality),
which considers both sensing coverage and sensing reliability
jointly. Additionally, we design a mutual-aided truth discovery
dispatching method to estimate sensing reliability and improve
ASQ under uncertain vehicle statuses. Real-world data from our
deployed MCS system in a metropolis is used for evaluation,
demonstrating that QUEST achieves up to 26% higher ASQ
improvement, leading to a reduction of reconstruction map errors
by 32-65% for different reconstruction algorithms.

Index Terms—Internet of Things; Mobile sensing and applica-
tions; Mobile Crowdsensing; Data Quality

I. INTRODUCTION

Mobile crowd sensing (MCS) has become a promising
paradigm for collecting large amounts of spatio-temporal
data [1]. It takes advantage of the mobility of mobile devices
carried by crowds to gather information from multiple sources,
allowing extensive coverage. Non-dedicated vehicular sensing
platforms, such as taxis, delivery drones [2], [3], and ride-
sharing vehicles like Uber and Lyft, can collect data while
moving in the cities, and thus provide cost-effective and easily
maintainable solutions for MCS. By utilizing the collective
sensing capabilities of these non-dedicated vehicles, MCS
enables people to benefit from a wide range of applications that
improve human life and decision-making processes, including
public infrastructure [4], traffic [5], and public policy [6].

One of the main problems in non-dedicated vehicular MCS
is to ensuring optimal quality of information (QoI), which
depends on both sensing coverage and sensing reliability.
Sensing coverage refers to the spatial and temporal extent of
data collection, while sensing reliability refers to the accuracy

* Xinlei Chen is the corresponding author.

and consistency of sensors’ measurements. However, as non-
dedicated vehicles are primarily used for transportation, they
tend to crowd in busy areas, leading to low sensing cover-
age elsewhere [7]. Additionally, lacking constant calibration,
sensors on non-dedicated vehicles can lead to variations and
uncertainties in their readings, affecting sensing reliability.
Moreover, these two aspects often conflict. Specifically, in-
creasing sensors in a region may improve sensing coverage,
but introduce noise and inconsistency among readings, reduc-
ing sensing reliability. On the other hand, relying solely on
high-quality sensors for data collection could improve sensing
reliability, but lead to insufficient coverage, resulting in data
gaps and limited spatial information. This trade-off between
sensing coverage and sensing reliability makes it difficult to
strike a balance, especially with uncertain and varying sensing
reliability, increasing the challenges in achieving high-quality
data collection.

Existing solutions have put great effort into improving
the QoI of the non-dedicated vehicular MCS systems, which
can be classified into the following two categories. 1. Im-
proving sensing coverage through vehicle dispatch, including
various dispatch strategies such as game theory, dynamic
programming [8], and reinforcement learning [9]. However,
these approaches often overlook ensuring sensing reliability,
resulting in potentially unreliable data and misleading infor-
mation. 2. Ensuring sensing reliability of individual sensors,
such as using external references [10], or machine learning
interpolation [11], to improve sensing reliability of low-cost
sensors. Despite their effectiveness in certain scenarios, these
approaches often assume the availability of specific types of
sensors or external references for calibration, making their
application limited or prohibitively expensive [12] for many
real-world scenarios.

The challenges of ensuring QoI in non-dedicated vehicu-
lar MCS systems can be summarized as follows. The first
challenge is the inherent trade-off between sensing coverage
and sensing reliability. As described above, balancing these
two aspects is significant due to their conflicting optimization
relationship.. The second challenge lies in the difficulty of
accurately estimating individual sensors’ sensing reliability.
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(a)Deviations and variations
of low cost sensors by time.

(b)Data fusions for improving
sensing reliability, reproduced
from [13].

Fig. 1: Motivations for QUEST

The constant mobility and varying locations of the sensors,
coupled with factors like sensor drifting, introduce significant
challenges in determining the accuracy and consistency of their
readings. Therefore, optimizing both sensing coverage and
sensing reliability becomes complex and dynamic, hindering
QoI improvement in such scenarios.

To address these challenges, we propose QUEST , a QUality-
informed multi-agEnt diSpaTch system to perform dynamic
sensing reliability assurance and coverage-driven dispatch dur-
ing non-dedicated vehicular MCS tasks. First, we introduce
a novel metric, aggregated sensing quality (ASQ), balancing
sensing coverage and sensing reliability considerations. Based
on the insight that sensing reliability of multiple inferior
sensors can be compensated by quantities [13], ASQ aggre-
gates the readings of multiple inferior sensors, providing a
measure comparable to a superior sensor. This enables optimal
trade-off by utilizing vast inferior sensor data. Second, we
design a mutually assisted dispatch framework, inspired by the
core concepts of truth discovery. In this framework, dispatch
decisions are influenced by inferenced sensing reliability,
which is derived from readings of multiple sensor sources.
Dispatch also improves sensing reliability inference through
careful trajectory overlap selection. This ensures adaptive,
optimized data collection for high-quality information gather-
ing. To evaluate the performance of our framework, we have
deployed a MCS system, involving 29 taxis over two months,
to collect fine-grained air pollution data. The result showcases
the effectiveness and potential of the QUEST in achieving
optimal QoI in non-dedicated vehicular MCS scenarios.

To summarize, we make the following contributions.
1) To the best of our knowledge, we are the first to for-

malize and address a comprehensive dispatch problem
for non-dedicated vehicular MCS, with the correspond-
ing metrics, ASQ, to jointly ensure both high sensing
coverage and sensing reliability.

2) We design a mutually assisted dispatch framework to
improve both sensing reliability inference and ASQ in
real time.

3) We evaluate the performance of our proposed solution
using real-world data collected by a MCS system de-

Fig. 2: This figure illustrates how dispatching non-dedicated
vehicular MCS in uneven sensing reliability setups can im-
prove QoI by making the coverage optimal.

ployed at a metropolis.
The remainder of this paper is organized as follows. Formu-

lation of the coupled problem of sensing coverage with sensing
reliability in §II. We then present the algorithm details in §III
and evaluate the performance in §IV. Then we present the
related work in §VI. Finally, we discuss the generalizability
and limitation of our work in §V and conclude in §VII.

II. SYSTEM MODEL & DEFINITION

We consider a non-dedicated vehicular MCS system that
faces the challenge of uneven sensing coverage and sensing
reliability. To address this issue, we present case studies
(§II-A), illustrate the system model and parameters of the
dispatch system (§II-B), and explain how we model sensing
reliability and sensing coverage as two significant components
of vehicular sensing performance (§II-C) to ultimately improve
QoI.

A. Motivation Case Studies

In non-dedicated vehicular MCS, the accurate sensing of
O3 levels is of critical importance for assessing air quality and
understanding potential health risks. However, commonly de-
ployed low-cost O3 sensors may exhibit significant deviations
from ground-truth measurements, as illustrated in Fig. 1(a).
These deviations can hindering the ability to make informed
decisions based on the sensed information. Moreover, the
lack of constant calibration for sensors mounted on non-
dedicated vehicles introduces uncertainties in the reliability of
their measurements, further complicating the data collection
process.

We explore the potential of data fusion techniques to
enhance sensing reliability by compensating the quality of
inferior sensors with quantity. As demonstrated in previous
research [13], data fusion can play a pivotal role in reducing
the relative expanded uncertainty of multiple sensors that
exhibit significant deviations from each other(Fig. 1(b)). By
adopting data fusion approaches, we can capitalize on the col-
lective sensing capabilities of multiple non-dedicated sensors.
This allows us to harness their potential, covering a broader
geographical area and obtaining a more accurate representation
of the environment.



TABLE I: Major Notations

Symbol Descriptions of Notations
t ∈ {1, . . . , T} tth time slots to collect the data
T time slot numbers in one dispatch period
(x, y) grid coordinates, where

x ∈ {1, . . . ,M}, y ∈ {1, . . . , N}
c ∈ {1, . . . , C} the cth vehicle in all C vehicles
Ic whether vehicle agent c. is dispatched
rc the rcth trajectory of c, rc ∈ {0, . . . , Rc}
Rc all possible trajectories for vehicle agent c.

D
rkc
c the seleted trajectory of the vehicle agent c,

a M ×N × T tensor, also noted as Drc
c ,

denoting selection of the rcth trace for c.
B the budget for the dispatching system
wc ∈ {1, . . . ,W} the estimated sensing reliability for sensor c
β balance factor
m

(x,y,t)
c the reading of sensor c at a given spatial-temporal

grid (x, y, t)

m
(x,y,t)
(∗) the aggregated result at a given spatial-temporal

grid (x, y, t)
bc ∈ {1, . . . ,B} the constant bias for sensor c

B. System Models

The proposed dispatching system aims to improve the
Quality of Information (QoI) by ensuring optimal sensing
coverage while addressing the sensing reliability issue. To
achieve this, the platform selects routes for taxis and allocates
a paid incentive budget to drivers (as shown in Fig. 2) to
expand the sensing coverage of taxis in the system. Although
many current dispatching systems have overlooked sensing
reliability, it is one of our main contributions to the field.
We consider an optimized spatial-temporal distribution with
even sensing coverage and sensing reliability as the optimal
solution, as it provides representative insights for various
applications [14], [8]. The basic notations used in this paper
are summarized in Table I.

To efficiently capture and analyze the geographical area of
interest, we utilize a discrete spatial-temporal map represented
by a grid M × N . Each cell on the grid is denoted by its
coordinates (x, y), where x ranges from x ∈ 1, . . . ,M and
y ranges from 1, . . . , N , representing longitude and latitude,
respectively. The time dimension is discretized into time slots
of duration dt minutes, denoted by t ranging from 1, . . . , T .

Within the grid map, we have C vehicles unevenly dis-
tributed. Vehicles are all equipped with sensors, enabling
automatic data collection at each time slot t. Each vehicle,
denoted as vehicle c = 1, . . . , C, has a set of possible traces,
denoted as Rc. Rc includes K different traces, represented by
the 3D tensor rkc ∈ RM×N×T , indicating vehicle’s presence
within the grid map M×N over sensing period T . Specifically,
rkc provides spatial occupancy information of the vehicle in
each time slot. We use Dc to represent the selected trace for
vehicle c from the set of possible traces.

The proposed dispatch operation revolves around selecting
the optimal trace from the trace sets rkc ∈ Rc, thus altering the
spatial-temporal distribution of the dispatched vehicle. Each
vehicle, denoted vehicle c, has its default trajectory represented
by r0c , which corresponds to the vehicle’s trace without any

dispatch. The possible trajectory set for a vehicle Rc and its
estimated default trace r0c is given by a mobility predictor
altered from [15]. To indicate whether the scheduler selects
vehicle c and determines its route, we utilize an indicator
variable Ic, defined as follows:

Ic = {Dc == r0c} ∈ {0, 1} (1)

Dispatching non-dedicated vehicles has consequences po-
tentially impacting their primary tasks, requiring an incentive
cost. If the scheduler aims to alter a vehicle’s trajectory
(Ic = 1), a budget is allocated as compensation. In our case,
we simplify the budget limit as the upper bound on quantity
of vehicles dispatched, denoted as B.

C∑
c=1

Ic ≤ B (2)

Related studies in the field have explored various com-
pensation models to incentivize participation and minimize
disruptions to user routine activities [1], [16]. In the Evaluation
section, we will further discuss the impact of user acceptabil-
ity.

C. Problem Formulation

To strike a balance between sensing reliability and sensing
coverage, we propose a novel objective function called aggre-
gated sensing quality (ASQ). The ASQ objective function
draws inspiration from previous works [14], [17] in the sensing
coverage domain, where entropy is used to measure even-
ness of sensor’s spatial distribution. we extend this concept
to incorporate sensing reliability. The sensing reliability is
originally derived from the paradigm of truth discovery [18],
which models the reliability of sensors using the reliability
factor wc. A higher value of wc indicates a sensor with
better sensing reliability, with wc = 1 denoting average
reliability. This identifies sensors providing more reliable data
and those needing additional vehicle dispatch or more readings
to compensate. ASQ is formulated as follows:

ϕw(W, Dr) = (1− β)E(W, Dr) + β logQ(W, Dr) (3)

Here, β is a parameter that controls the importance of the
two factors(sensing reliability-aware coverage evenness and
sensing reliability-aware coverage rate). The entropy of the
spatial distribution of sensed areas, E(W, Dr), is computed
as:

E(W, Dr) = −
∑

x,y,t,W
P (x, y, t,W) logP (x, y, t,W) (4)

The higher the entropy, the more even the sensors are
distributed in the area, and sensing coverage is considered
better.

We determine P (x, y, t,W) using the aggregated sum of
variance factors in the trajectory:



P (x, y, t,W) =

∑C
c=1 wcDc(x, y, t)

CT
(5)

This equation represents the probability distribution of ve-
hicle agents, where Dc(x, y, t) denotes the presence of vehicle
c at location (x, y) and time t, and wc represents the weight
associated with vehicle c. The sensing reliability serves as a
weight, providing information on the distribution of sensing
reliability on the spatial-temporal map, allowing us to ensure
reliable coverage.

The size of sensed areas, Q(W, Dr), is calculated simply
as:

Q(W, Dr) =

∣∣∣∣(x, y, t) : P (x, y, t,W) >
1

CT

∣∣∣∣ (6)

where Q(W, Dr) represents the size of the sensed areas in
the grid map where the net sensing reliability is greater than
an ”average sensing reliability ” for a sensor.

The reason for selecting a weighted aggregate sum in
Equation 5 is that it provides an intuitive and general way to
quantify sensing reliability as the evenness of the sensor dis-
tributions on the map, while also considering their individual
sensing reliability. Although this model is designed to work
well with the weighted average data fusion process, further
research could explore adapting it to more sophisticated data
fusion algorithms.

max
I1,··· ,IC
D1,··· ,DC

ϕ(W, D) = (1− β)E(W, D) + β logQ(D)

subject to


Dc = rkc , k ∈ {1, 2, . . . ,K}
Ic ∈ {0, 1}∑C

c=1 Ic ≤ B

(7)

The objective function maximizes the quality-informed en-
tropy of sensors’ distribution, considering sensing reliability
as a weight factor. Physical constraints imposed by agents’
mobility and a budget constraint are also considered. The
problem is NP-hard, involving combinatorial optimization on
discrete variable (Ic) and continuous variable (wc) under
a nonlinear objective function (ϕw) and linear constraint
(
∑

Ic ≤ B). It’s novel for considering both sensing reliability
and sensing coverage as important aspects of vehicle sensing
performance, incorporating them into a unified framework that
jointly optimizes sensors’ quantity and reliability.

III. ALGORITHM DESIGN

In this section, we present our proposed dispatching frame-
work for improving QoI by optimizing ASQ. The algorithm
consists of two mutually assisted key steps: sensing reliability
inference and dispatch(shown in Fig. 3). The first step focuses
on inferring the reliability of sensors(§III-A), while the sec-
ond step involves dispatching vehicles based on the inferred
sensing reliability (III-B). These steps form a loop, with the
dispatching process also contributing to sensing reliability
inference improvement. Finally, we analyze the algorithm’s
time complexity(III-C).

Alg. 2:  Mutually assisted
Belief-aware Vehicle

Dispatching 


Vehicle Mobility
Prediction
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Distribution
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Reliablity Inference


Vehicle Selection
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Trajectory
Selection

Belief Prioritizing
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ra
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Fig. 3: This figure shows our proposed algorithm’s framework.

A. Online Sensing Reliability Inferring

In our framework, we adopt the concept of truth discov-
ery [18] to model the sensing reliability of sensors using the
reliability factor wc. Truth discovery is a method that infers the
sensing reliability of sensors by comparing their measurements
m

(x,y,t)
c with the inferred truth m

(x,y,t)
(∗) from other sensors in

correlated sensing scenarios. However, in real-world sensing,
different sensors exhibit constant deviations from the true
value, introducing bias. This bias impacts data fusion result,
especially if all sensors dispatched to one location have the
same bias direction, e.g., underestimating. To address this
challenge and account for systematic errors, we improve truth
discovery by introducing a bias term bc and redesigning the
optimization function as follows:

min
M(∗),W,B

f
(
M(∗),W,B

)
=

∑
x,y,t

{
C∑

c=1

wc∥m(x,y,t)
(∗) −m(x,y,t)

c + bc∥2}

s.t.
C∑

c=1

exp (−wc) = 1,
C∑

c=1

bc = 0

(8)

In this optimization function, we consider minimizing the
weighted sum of the differences between the inferred truth
M∗ and the observed measurements Mc, taking into account
the bias terms bc. The optimization objective is to minimize
the overall difference between the aggregated measurement
and weighted sensor reading. The first constraint restricts the
range of weight to avoid it being trapped to negatively infinite.
The second constraint prevents the bias term from taking out
all the sensor readings.

To infer sensing reliability, we address the optimization
problem described in Equation 8. We employ a similar ap-
proach as [18] by using Lagrangian multipliers. The objective
is to estimate the sensing reliability values for each sensor.
Using Lagrangian optimization, we derive the following equa-
tions:

M : m
(x,y,t)
(∗) =

∑C
c=1 wc(m

(x,y,t)
c − bc)∑C

c=1 wc

(9)



W : wc = −log
∑

(x,y,t) ∥m
(x,y,t)
(∗) −m

(x,y,t)
c + bc∥2∑

(x,y,t)

∑C
c′=1 ∥m

(x,y,t)
(∗) −m

(x,y,t)
(c′) + bc′∥2

(10)

B : bc =

∑
x,y,t(m

(x,y,t)
c −m

(x,y,t)
(∗) )

∥rc(x, y, t) ̸= 0∥
(11)

These equations enable inferring sensing reliability values
for sensors based on their measurements and the calculated
weights.

Algorithm 1 is designed to estimate the reliability factor
wc and constant bias bc of individual sensors in real-time
considering the inferred truth (m(x,y,t)

(∗) ) for all sensors in a
given time period. It takes the sensing values, error bound ϵ,
and past outputs (m′

(∗), w
′
c, b

′
c) as input and returns the updated

data quality estimates (wc, bc) and the updated inferred truth
(m(x,y,t)

(∗) ) as output.
For each spatial-temporal cell (x, y, t), the algorithm iterates

over all sensors in the corresponding cluster (s(x,y,t)) to update
their data quality estimates (wc and bc). Eq.(10) and Eq.(11)
are utilized for this purpose. The inferred truth is then updated
using Eq.(9) based on the updated data quality estimates.
These equations use past outputs (m(∗)′ , w

′
c, b

′
c) as parameters

in the summation, effectively incorporating historical data to
guide the update process.

The belief of sensing reliability inference is naturally de-
duced by (10). From the equation we can see that the value
of w can be written as w ∝ logk · d(m(x,y,t)

(∗) ,m
(x,y,t)
c − bc),

while k is the vehicle that participates in the measurement
aggregation. Thus, we define the belief of estimate εc as
follows:

εc = log

(
C∑
i=1

T∑
t=1

rkc (t) · rki (t)

)
(12)

The definition of rkc (t) is given in Table I, the product of the
two tensors indicates the overlap of the trajectories between all
vehicles. The sum of all vehicles and all time slots gives the
total number of vehicles that have an overlapping trajectory
with c. The log of this number is the belief signal ε. If there
is no overlap of another vehicle agent with c, the belief εc
would be 0, meaning that the inference sensing reliability for
the vehicle agent c is not reliable at all.

B. Dispatching Algorithm

Algorithm 2 is devised to improve QoI by strategically
dispatching vehicles for higher ASQ. Unlike previous work[7],
our approach considers sensing reliability and its inference,
rather than assuming uniform reliability for all vehicles. We
prioritize vehicles with overlapping trajectories, as they’re
more likely to have accurate inferred sensing reliability. These
vehicles are then sent to less populated areas to improve data
collection and inference sensing reliability. Once the selection
process is completed, dispatching is carried out to improve
sensing coverage with sensing reliability, utilizing a V Value-
based approach in a similar way. In this way, we optimize

Algorithm 1: Online Sensing Reliability Inference
Input : Input: Sensing value of all sensors in a given

time period m
(x,y,t)
C , c ∈ C, error bound ϵ,

past outputs (m(∗)′ , w
′
c, b

′
c)

Output: Output: Updated data quality estimates wc,
bc, and inferred truth m

(x,y,t)
(∗)

1 Split the sensors into clusters based on their location,
so that s(x,y,t) = {c : sc = (x, y, t)} ;

2 Initialization: Set Lagrangian factor λ = 0;
3 while error > ϵ do
4 λ = λ+

∑
c(m

(x,y,t)
(∗) −m

(x,y,t)
c )2, c ∈ s(x,y,t) ;

5 for (x, y, t) ∈ (M,N, T ) do
6 for c ∈s(x,y,t) do
7 Update wc using equation (10) ;
8 Update bc using equation (11) ;
9 end

10 Update m
(x,y,t)
(∗) using equation (9) ;

11 error = m
(x,y,t)
(∗) −m

(x,y,t)
(∗)′ ;

12 if error ≤ ϵ then
13 break;
14 end
15 m

(x,y,t)
(∗)′ = m

(x,y,t)
(∗) ;

16 end
17 end

both the overall coverage of the data and the quality of the
collected data.

The calculation of V value is given by

Vc(Dc, P ) = −
∑

x,y,t wcDc. P (x, y, t,W)∑
x,y,t P (x, y, t,W)

(13)

Here Dr
c could be the selected trace of current car, or

guessed trace of the car by the mobility predictor.

C. Time Complexity Analysis

To analyze the complexity of our algorithm, we need to
mainly consider the time complexity of each step. The time
complexity of the initialization step is O(C) where C is the
number of vehicles because we need to set the initialization
for all vehicles. The time complexity of the calculation step
is O(CT 4), since we need to calculate the sensing quality
for each pair of vehicles, while the trajectory size has an
estimated complexity of O(T 4) according to the Bellman-Ford
algorithm for trajectory optimization. Therefore, the overall
time complexity of our algorithm is O(CT 4) in time.

IV. EVALUATION

We present the evaluation of QUEST with simulated dis-
patch and map reconstruction experiments using real-world
data. Our experiment setup involves a large-scale simulation
based on data from a real-world MCS system(§IV-A). We
compare how ASQ changes with different factors and show
the advantages of QUEST over baselines(§IV-B). We further



Algorithm 2: Mutually assisted belief-aware Vehicle
Dispatching

Input : estimated trajectory of all vehicles D0
C ,

possible trace set of vehicle RC , dispatching
budget B, sensing reliability W

Output: An improved feasible solution
S∗{IC , Dr(k

∗)

C }
1 Initialize a feasible solution S = {IC , Dk∗

C }, set
S∗ = S, belief ε through eqn. (12) ;

2 for iter ++ ≤ MaxIter do
3 S = S∗;
4 Calculate P (x, y, t,W ) by eqn. (5);
5 C∗ ← {c | εc = max(εC)} ;
6 for c ∈C∗ do
7 k∗ = maxεc{maxr V (Drk

c , P ), k ∈ Rc};
8 if k∗ is the original trace then
9 Cancel c dispatching ;

10 end
11 if Total cost ≤ B then
12 Dispatch vehicle c with trace k∗ ;
13 else
14 continue ;
15 end
16 c = c→ next
17 end
18 Select (c′, k′) = argmaxc,k V (Drk

∗

c , P );
19 if k′ > 0 then
20 Update S∗, B(c′) and εC
21 else
22 Ic′ = 0, B(c′) = 0;
23 end
24 end

demonstrate the effectiveness of ASQ by evaluating its rela-
tions with downstream task(§IV-C). Finally, we showcase the
effectiveness of our proposed mutually assisted framework via
ablation study(§IV-D).

A. Experiment Setup

1) Data Collection and Processing: We deployed mobile
sensors in 29 taxis and collected data for two months in
a large city, capturing environmental data such as humidity,
temperature, O3, and particle matter (see Fig. 4). Real-time
GPS location data from the taxis, along with accurate sensor
readings, were collected every 3 seconds. The data then un-
derwent preprocessing, including outlier removal and handling
of missing values using the sliding window approach with a
window size of 5 minutes.

2) Simulation Environment: To replicate a real-world sce-
nario, we selected a specific area where the vehicle trajectories
were relatively dense, corresponding to a 15 km × 8 km
grid in the city. The spatial resolution was set at 1 km,
corresponding to a normal air pollution setup [19], [20]. The
temporal resolution(i.e., time period dt) at 2 minutes, and the

Fig. 4: The sensor platform deployed in our taxi, features a
GPS receiver, a gas prompt, and four slacks capable of sensing
various physical factors across the city.

TABLE II: Performance by different dispatching and recon-
struction algorithms

NA PAS our QUEST
ASQ 4.05 5.10 5.37
R-RMSE, Linear (ug/m3) 49.72 28.90 26.49
R-RMSE, GPR (ug/m3) 39.25 28.81 26.48
R-RMSE, BGCP (ug/m3) 26.24 12.24 9.27
Err. Reduction(%) / 53.4 64.6

actuation period was set as 5T (10 minutes), representing the
average time for a taxi to drive 4 km, and ensures that air
quality remained static during dispatch simulations. Due to
factors such as water bodies, nature reserves, or administrative
borders, 42 grids were not covered by any mobile sensor and
were marked as ’Excluded Area’, thus excluded from our
performance-metric calculations.

3) Virtual Taxi Fleet: To create a large taxi fleet and
simulate their original trajectories, we utilized the GPS data
and parse the trajectory of each vehicle. The trajectories rep-
resented actual taxi movements without incentivized dispatch.
To simulate a larger taxi fleet for broader coverage, we expand
the mobility and distribution of the taxis with respect to the
original trajectories to represent 200 virtual taxis. This allowed
us to study and evaluate the behavior and coverage of a larger
taxi fleet without actually deploying additional physical taxis.
Our default dispatch budget was set to B = 80 and we
assumed a default mobility prediction error of 0 and assumed
a 100% dispatch acceptance rate.

4) Sensing Simulations: To simulate low-cost sensors with
controllable sensing error, we mainly choose O3 data from
our datasets for evaluation. The low-cost sensor for O3 has
highly variable reliability with many available datasets. We
extract error distributions from publicly available low-cost O3

sensor calibration datasets [21], [22] and applied them to our
fine-grained sensing result maps with the corresponding types
of sensors. We generate sensing errors according to the error
extracted from these datasets and add them to the grid’s ground
truth as the sensor’s measurement.

5) Baselines: Two baseline methods are set to evaluate the
improvement of ASQ for QUEST .

1. No Actuation (NA), marked by blue dots: This method
does not dispatch vehicles and all vehicles follow their original



(a)ASQ VS. Budget (b)ASQ VS. M. Pred. Error (c)ASQ VS. User Acceptance (d)ASQ VS. Error Level

Fig. 5: The performance of QUEST under different factors.

trajectories. By comparing NA with our QUEST , we investi-
gate the performance improvement from our entire system,
which includes two prediction models and a prediction-based
actuation planning algorithm.

2. PAS, marked by a brown cross: This method dis-
patches vehicles by a prediction-based actuation planning
algorithm [8]. This method is considered the state-of-the-
art method used for dispatching non-dedicated vehicles for
sensing coverage, and a successor of [7].

6) Performance Metrics: We first use ASQ (defined in
§II-C) to evaluate dispatch algorithms. To assess the the real-
world impact of ASQ as well as dispatch algorithms, we
examine their impact through map reconstruction, a down-
stream task for mobile crowdsensing. Map reconstruction is
the process of reconstructing a complete representation of
environmental data across a grid map based on data collected
by dispatched vehicles. We employ three different map recon-
struction algorithms: Linear Interpolation, Gaussian Process
Regression, and the BGCP [23] algorithm. We primarily use
the Reconstructed Root Mean Square Error (R-RMSE)
metric to measure the map reconstruction effectiveness. The
R-RMSE quantifies the accuracy of the map reconstruction
process by comparing the reconstructed map obtained after
dispatching with the ground truth data.

B. Evaluation for QUEST

To assess the potential real-world impact of different
dispatching algorithms, we also use Error Reduction Rate
(Err. Reduction), the maximum reduction rate of R-RMSE
among all the reconstruction algorithms, to measure how
much improvement the given dispatching algorithm can bring.
To analyze how different factors affect the performance of
QUEST , we mainly use ASQ to evaluate different dispatching
algorithms.

Table II shows the performance comparison of sensors and
algorithms for sensor readings. Our QUEST algorithm out-
performs others achieving highest the ASQ score of 5.37 and
lowest RMSE among reconstructed algorithms. This means,
without additional incentivize cost, our algorithm increases
performance by 26% over the previous state-of-art. Further-
more, QUEST achieves the highest error reduction rate of

64.6%. These results demonstrate effectiveness and superiority
of our proposed algorithm compared to the state-of-art algo-
rithm.

To demonstrate performance under different dispatch bud-
gets, we plot ASQ with the varying amounts of dispatch
budget in Fig. 5(a). Our proposed QUEST consistently out-
performs three baselines across different budget amounts. As
the number of scheduled vehicles increases, QUEST shows a
more significant improvement compared to the PAS algorithm,
reaching up to 10% improvement with 80 vehicles. This is
because our QUEST recognize the sensing reliability and
hence utilize the budget for better coverage. However, with
increasing budget, the superiority of QUEST becomes less
significant. This is predictable since the initial distribution is
dense, making QUEST reaches performance boundary when
most vehicles were dispatched to the near surrounding.

We study the impact of mobility prediction error to different
dispatch algorithms by adding random error with varying
degrees of Euclidian distance bias [24]. As Fig. 5(b) shows,
QUEST is robust to different accuracy levels of the mobility
prediction model. Although ASQ decreases with larger predic-
tion error, QUEST outperforms benchmark methods in most
cases. Our QUEST is more susceptible to mobility prediction
error as the cascading effect impacts more on scheduling
vehicles with higher sensing reliability.

We consider scenarios where users might refuse to follow
dispatched trajectories. Fig. 5(c) shows user acceptance prob-
ability impacts algorithm performance. QUEST consistently
outperforms PAS across acceptance probabilities, achieving
higher ASQ indicating better optimization of sensing coverage
and reliability.

To explore how different degrees of sensing error impact
ASQ, we tune controllable sensing error by adding Gaussian
noise, where the sensing error level refers to the standard
deviation value. As Fig. 5(d) shows, we observe that the
relationship between sensing error level and ASQ is not
straightforward and varies by algorithm. There are instances
where the ASQ value remains relatively stable or even slightly
increases with higher sensing error variance. This is because
ASQ is mainly attributed to the relative error of different
sensors, so it is not sensitive to overall sensing error changes.



Fig. 6: Sensing error after dispatching. Here we zoomed in on a typical area affected
by dispatching algorithms. QUEST expanded the sensing coverage without the loss of
sensing reliability.

Fig. 7: ASQ shows negative correla-
tions with R-RMSE, among all dif-
ferent reconstruction algorithms.

Fig. 6 visualizes dispatch results with ASQ. PAS and
QUEST dispatch vehicles from dense to nearby sparse areas.
The overall sensing reliability is measured by mean absolute
error over sensed area (S-MAE). QUEST has the lowest sens-
ing error and highest coverage among algorithms, indicating
effective balancing of sensing reliability and coverage. By
further observing spatial error distribution, QUEST reduces
errors in poorly covered areas by NA or PAS. This is because
QUEST selects vehicles with sufficient net sensing reliability,
generating more reliable data than NA or PAS.

C. Evaluation for ASQ

Fig. 7 visualizes the relationship between ASQ and R-
RMSE under various experimental conditions, such as differ-
ent times, budgets, and algorithms. Each dot represents one
round of simulation dispatching experiment. The purpose of
this analysis is to demonstrate the relevance of the designed
ASQ metric in the context of downstream tasks, particularly in
map reconstruction. We observe that ASQ is inversely related
to R-RMSE values. Dispatching results with higher ASQ
scores generally exhibit lower R-RMSE values, suggesting
higher QoI in the map reconstruction process. However, actual
R-RMSE could still vary within the same ASQ value due to
performance differences and statistical variations among map
reconstruction algorithms.

D. Ablation Study

We conduct an ablation study to evaluate the effectiveness
of our mutually assisted online sensing reliability inference ap-
proach. QUEST-NI is the naive version of our QUEST , where
sensing reliability inference is performed before dispatching,
which makes dispatching not affect improving sensing relia-
bility inference.

Table III shows the results of the ablation studies. We
observe that QUEST-NI did have a higher ASQ among the
baseline shown in Table II, but the error reduction by dis-
patching does not show a clear advantage. This is because
QUEST-NI does not have a well-inferred sensing reliability,
leading to sub-optimal dispatching.

TABLE III: Ablation Study

Algorithm QUEST-NI QUEST
ASQ 5.26 5.37
R-RMSE, Linear (ug/m3) 27.40 26.49
R-RMSE, GPR (ug/m3) 27.20 26.48
R-RMSE, BGCP (ug/m3) 11.59 9.27
Err. Reduction(%) 55.8 64.6

Fig. 8 shows the relationships between the inferred reliabil-
ity factor w and the generated sensing error in different areas.
We selected 3 sectors with varying numbers of vehicle agents.
Fig. 8(a) shows the result of reliability inference by QUEST-
NI. Although the inferred sensing reliability somehow reveals
the error induced, the error of local aggregated measurement
induces a bias in inferring sensing reliability, leading good
sensors to get lower w due to deviation from the local
aggregated measurement. On the other hand, Fig. 8(b) shows
how the overall result could be optimized by mutually assisted
dispatch to help reliability inference. In this figure, although
randomness makes little deviations, the result consistently and
correctly classifies sensing reliability of each sensor.

V. DISCUSSIONS

We provide a brief discussion on the generalizability, po-
tential applications, and future directions of QUEST . We also
address its existing known limits.

Generalize to other MCS applications: While QUEST
was originally designed for air pollution sourcing tasks, the
underlying principles of QUEST can be adapted and extended
to other sensing scenarios. For example, it could be applied
to wireless signal sensing, noise pollution mapping, and var-
ious other applications by adjusting the spatial granularity
to suit the specific use case. Nevertheless, since QUEST
adpots truth discovery-based reliability inference that only
consider addressing data on the same modality, when facing
applications that utilize cross-modality data-fusion for sensing
reliability [25], [26], QUEST might needs further design to be
work appropriately.

Adopting other incentivize model: While QUEST assumes
a simple incentivize model, different strategies do not impact
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Fig. 8: These figures visualize the relations between the
generated error and inferred reliability factor. QUEST utlizes
mutually assited dispatching to acquire a more accurate infer-
ence.

our main contributions, the modeling of ASQ and the proposed
mutually assisted dispatch framework. However, for different
incentive models or scheduling approaches, there is potential
to develop more budget-efficient strategies.

Sensor Compatibility: Our approach relies on sensors
providing data fusion enabling low-cost sensors to compensate
for sensing reliability through quantity. However, some types
of sensors, like IMUs and GPS, lack this capability. In such
cases, QUEST approach may not be directly applicable.

Dependency on Accurate Mobility Prediction: As eval-
uation shows, the performance of QUEST is sensitive to the
accuracy of the mobility prediction accuracy. Ensuring accu-
rate prediction is crucial for effective real-world application.

VI. RELATED WORK

Non-dedicated Vehicular MCS: Mobile Crowd Sensing
(MCS) offers distinct advantages such as high mobility and
cost-effectiveness [27]. Non-dedicated vehicular MCS lever-
ages non-dedicated vehicles for sensing purposes, enhancing
coverage and operational efficiency. While past research ex-
plored data volume [28], multi-object tradeoffs [29], incen-
tivization strategies [30], [31], and data utilization [32], [33],
[19], we focus on sensing reliability and coverage challenges
in non-dedicated vehicular MCS. Our findings seamlessly
integrate into broader MCS research.

Sensing Coverage: To ensure sensing coverage, researchers
proposed a spatial-temporal scheduling approach to select
MCS agents with consideration of energy efficiency or budget
effectiveness [34], [35], [36]. [17] addressed spatio-temporal
redundancy when performing MCS tasks in urban cities with
high-resolution maps. Researchers also proposed to apply
some budget to motivate the MCS agents to cover the area
of interest. [7] and [9] proposed incentive systems to guar-
antee spatial-temporal coverage of non-dedicating ridesharing
vehicles. Most of the above methods were assumed to be near
perfect sensing reliability. However, such an assumption is
impractical in the real world with sensing reliability problems.

Sensing Reliability: Mobile sensors are subject to en-
vironmental changes and complicate influence factors [37].

Ensuring MCS sensing reliability requires comparing collected
data to ground truth [38], [39], [40], calibrating sensors using
external source [10], [41], or using machine learning models
to improve reliability [11]. However, these methods face
challenges in dynamic,non-dedicated vehicular MCS systems,
where sensors vary and references are not always available. In
these case, [42], [43] presented historical-data-based compar-
isons when historical data can serve as pseudo-ground truth
for static scenes, [18] proposed truth discovery techniques for
correlated sensors and areas. These provide valuable insights,
yet still suffer from two issues. First, non-dedicated vehicles
are unevenly distributed, so areas with few vehicles lack data,
resulting in both uncertain sensing reliability and poor sensing
coverage. Second, current methods target finding unreliable
sensors without distinguishing constant bias. This necessitates
developing new techniques to guide dispatch for better QoI.

VII. CONCLUSION

To enhance quality of information in non-dedicated vehicu-
lar MCS systems, we propose a quality-informed multi-agent
dispatching system, QUEST . We formulate paradoxically
correlated sensing reliability and sensing coverage as an opti-
mization problem. Our framework infers sensing reliability for
highly dynamic MCS agents via a dispatch algorithm that also
improves sensing coverage. City-scale physical feature-based
simulations shows significantly lower error at high coverage.
Our solution opens new research avenues for non-dedicated
vehicular MCS, such as modeling and optimizing sensing
reliability over sensing coverage amid uncertain sensing re-
liability.
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