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Abstract—In this paper, we propose a dynamic data trans-
mission strategy for smart home environments that aims to
optimize the Quality of Experience (QoE) by adaptively adjusting
the data upload frequency based on the predicted trends in
sensor data. Using the home wireless sensors monitoring dataset,
we implement a deep learning model for accurate time series
forecasting. In addition, an anomaly detection mechanism is
used to identify critical events, requiring more frequent data
uploads when important changes are detected. The QoE is
quantified through a weighted average of several influencing
factors, including data timeliness, timely upload of critical events,
and transmission frequency. Our optimization objective is to
maximize QoE while minimizing the number of transmissions,
with an emphasis on reducing energy consumption through
intelligent scheduling. The results demonstrate that our approach
effectively balances data timeliness, transmission efficiency, and
energy savings, leading to improved user satisfaction in smart
home applications.

Index Terms—QoE, LSTM Models, Energy conservation,
Anomaly detection, IoT, Adaptive algorithm

I. INTRODUCTION

With the rapid development and deployment of the Internet
of Things (IoT) and network intelligence, efficient manage-
ment and timely transmission of sensor data are crucial for
enhancing user experience. In smart home environments, QoE
depends not only on the accuracy of data collected from
various sensors but also on the timely and efficient transmis-
sion of these data. To optimize QoE, the key is to balance
the data upload frequency with the need to capture critical
events while minimizing energy consumption. This requires
an intelligent data management system that can dynamically
adjust the transmission strategy based on the importance and
urgency of the data.

Smart home systems are equipped with numerous sen-
sors to monitor various environmental parameters such as
temperature, humidity, light, and energy consumption. These
sensors generate a significant amount of data that needs to
be processed and transmitted in a manner that maximizes user
satisfaction while considering energy efficiency. The challenge
lies in determining the optimal timing for uploading these data

B Lin Wang is the corresponding author.

without compromising the capture of critical information or
user experience. Uploading too frequently can waste energy
and bandwidth resources, while uploading too infrequently
may result in missing important events. Therefore, an in-
telligent data management system needs to find the optimal
balance between these two extremes.

Previous research has explored various methods for time
series prediction and anomaly detection in smart home system
environments. Traditional approaches [1] like ARIMA and
linear regression models have been employed, but they often
underperform when dealing with the inherent nonlinearity and
complexity of sensor data. With the rise of deep learning,
models such as Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks have shown promising
results in accurately predicting future data points [2]. These
models can capture long-term dependencies and complex
patterns in time series data, making them well-suited for smart
home applications. Deep learning approaches not only improve
prediction accuracy, but also adaptively learn data features,
reducing the need for manual feature engineering.

In this paper, we propose a dynamic data transmission
strategy that leverages deep learning for accurate time series
prediction and anomaly detection.The dynamic data trans-
mission strategy may decrease the accuracy of time series
prediction, thereby affecting subsequent anomaly detection
and user QoE. The key challenge lies in effectively addressing
this issue. Our main objectives are threefold: first, to achieve
accurate time series prediction and adjust the data upload
frequency based on the predicted trends; second, to develop
and evaluate anomaly detection algorithms to capture critical
events and anomalies; and third, to define and optimize QoE
metrics for a comprehensive evaluation and improvement of
user experience. By combining these three objectives into a
unified framework, our approach comprehensively addresses
data management challenges in smart homes.

We use a home wireless sensors monitoring dataset [3]
to train deep learning models. The model’s predictions help
determine the optimal timing for data transmission, balanc-
ing the need for timely updates and energy efficiency. An
integrated anomaly detection mechanism ensures immediate
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uploads when significant data changes occur, capturing critical
events. This adaptive approach helps minimize unnecessary
transmissions while ensuring important data is not missed. By
continuously optimizing the model using historical data and
real-time feedback, the system can learn and refine its decision
policy over time.

We have conducted a detailed summary of our system.
Our results demonstrate that the proposed strategy effectively
balances data timeliness, transmission efficiency, and energy
conservation, thereby improving user satisfaction in smart
home applications. Compared to periodic data transmission
methods methods, our deep learning-driven approach performs
better across various QoE metrics, demonstrating its effective-
ness and applicability in smart home scenarios. The insights
gained from this study provide valuable guidance for the
development of intelligent data management systems in smart
homes, emphasizing the importance of adopting adaptive and
efficient data transmission strategies. Future work can explore
extending this approach to other types of IoT applications
and integrating it with emerging technologies such as edge
computing and federated learning to further enhance system
performance and scalability.

The main contributions of this work can be summarized as
follows:

• We identify the challenges of optimizing dynamic upload
frequency in smart home environments resulting in re-
duced prediction accuracy and user QoE and proposed a
dynamic data transmission strategy. This strategy com-
bines deep learning-based time series forecasting with
anomaly detection to adaptively adjust the data upload
frequency, ensuring efficient and timely data transmis-
sion.

• By implementing a dual-layer LSTM network for time
series forecasting, our approach provides highly accu-
rate predictions of sensor data trends. This allows for
more precise scheduling of data uploads, ensuring crit-
ical events are captured without unnecessary transmis-
sions.Compared to traditional fixed-interval transmission
strategies, our approach can reduce transmission fre-
quency by approximately 60% on average with minimal
impact on user QoE.

• We defined a set of QoE metrics that consider data
accuracy, timely upload of critical events, and transmis-
sion frequency. Our approach optimizes these metrics to
provide a balanced evaluation of user experience, leading
to improved satisfaction in smart home applications.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the relevant literature, focusing on key con-
tributions such as the Adaptive Data Transmission Strategy,
Deep Learning Integration for Accurate Predictions, and QoE
Metric Optimization. Section 3 and 4 present our methodology
and experimental evaluation, detailing the development and
implementation of these strategies. Section 5 concludes with
a summary of the findings and suggestions for future research,
particularly focusing on QoE optimization and energy-efficient

transmission scheduling in smart home environments.

II. RELATED WORKS

A. Energy-Efficient Modeling and Scheduling Methods

With the advancement of hardware and software in the field
of computing, energy-efficient scheduling methods [4] have
been extensively researched. Before the advent of machine
learning, many studies focused on mathematical methods for
scheduling, with the aim of optimizing energy consumption
through the design of protocols and algorithms. For example,
Yao et al. [5]. proposed an inverse logarithmic algorithm
that achieves energy savings in wireless sensor networks by
adjusting the transmission time allocated to each sensor. In the
context of collaborative execution in mobile cloud computing,
Zhang et al. [6]. formulated the problem as a constrained
shortest path problem on a directed acyclic graph, utilizing a
Lagrangian Relaxation Aggregated Cost (LARAC) algorithm
to schedule task offloading to the cloud, thereby reducing
device energy consumption. Furthermore, several other studies
used various mathematical and heuristic algorithms to target
energy reduction in different application scenarios [7]–[9].

In recent years, extensive research in machine learning has
established the use of machine learning for energy-efficient
scheduling as an effective paradigm [10]. Time-series data,
which are common data forms in energy-efficient scheduling
processes, benefit importantly from machine learning models
compared to traditional methods. Classical models such as
ARIMA and linear regression are commonly used for sequence
prediction [11], [12]. Although these models offer good in-
terpretability and can effectively fit simple linear data, they
struggle to model complex nonlinear relationships. Recurrent
Neural Networks are representative models in deep learning,
suitable for processing time series data or sequential data.
Common models include RNNs, GRUs, LSTMs, and their
variants [13], [14]. Original RNNs suffer from problems with
vanishing and exploding gradients [15]. To achieve higher
prediction accuracy, LSTM models are employed to better
capture complex time series. The work of Siami et al. shows
that LSTM outperforms traditional ARIMA and linear regres-
sion models [16]. Although some studies attempt to improve
prediction performance by improving model architectures or
applying attention mechanisms [17]–[19], these models often
lack the ability to capture temporal information as effectively
as recurrent neural networks, potentially becoming a bottle-
neck in scheduling algorithms.

B. Wireless Sensor Network Applications and QoE Design

Wireless Sensor Networks (WSNs) are increasingly used to
detect various environmental parameters in a wide range of ap-
plication scenarios due to their low cost, flexible deployment,
and large-scale self-organizing capabilities. For example, Lom-
bardo et al. proposed a distributed WSN deployment scheme
to detect environmental temperature and humidity [20]. Tien et
al. developed a WSN architecture for monitoring agricultural
environmental data [21]. Ullo et al. created a WSN application
for public transportation, which provides real-time traffic and

553



environmental conditions through sensors, allowing optimal
route planning to avoid public transportation congestion [22].
Using the ease of deployment and large-scale networking of
WSNs, Mabrouki et al. proposed an automated weather mon-
itoring system to detect and forecast weather data in specific
areas [23]. Based on a real-world deployed IoT smart gas me-
ter system, Wang et al. designed an ultra-low-power wireless
sensor device management framework to achieve stable and
accurate measurement with lower power consumption [24].
In addition, WSNs are also applied in various fields such
as construction, healthcare, and manufacturing. These widely
deployed devices help build digital environmental models to
assist decision-making.

As numerous wireless sensors are deployed, the QoE for
users of wireless network systems should also be consid-
ered. QoE reflects the subjective perception and acceptability
of users, and some studies infer users’ subjective feelings
through objective parameters to design QoE metrics. Yasuhiro
et al. proposed a scalable IoT QoE modeling framework
that qualitatively models physical parameters such as devices,
networks, computation and user interfaces according to ap-
plication characteristics [25]. Redowan et al. proposed a fog
computing method that ranks and deploys fog applications to
the corresponding fog instances according to user expectations
to maximize QoE [26]. Amulya et al. argued that in IoT en-
vironments, the quality of interactions between things should
be more considered, thus redesigning QoE as QoT to reflect
the quality of interaction in IoT [27]. Chen et al. proposed
a network multi-layer collaboration method to model Qoe
in wireless video streaming transmission in emotion-aware
intelligent systems and further reduced transmission energy
consumption and improved QoE [28]. In summary, QoE needs
to consider different influencing factors in different scenarios
to better optimize and improve the user experience.

III. METHODOLOGY

A. Overall Design

To achieve a scheduling method that balances user expe-
rience quality and sensor data upload frequency, selecting
appropriate time points for sensor data upload is a feasible
and effective strategy. Considering the limited computational
capabilities of most sensors, all decisions should be made by
the data center and then communicated to the sensors. There-
fore, predicting future trends in sensor data and incorporating
user requirements into scheduling decisions is essential.

The key challenge lies in obtaining accurate real-time sensor
data, as this is crucial to accurately predict future sensor
data trends. We aim to reduce the frequency of sensor data
uploads when data trends are stable, minimizing unnecessary
transmissions. In contrast, when data trends show important
changes, it is crucial to ensure timely uploads and adjust
our prediction models accordingly. This approach ensures that
even if real-time sensor data is not continuously available, pre-
diction accuracy is maintained while reducing the data trans-
mission frequency. From the user’s perspective, reducing the
number of sensor uploads extends sensor lifespan and reduces

maintenance frequency. Timely data uploads during significant
trend changes ensure that users can monitor abnormal changes
in real time. In addition, the scheduling process considers user
requirements for real-time information, ensuring that users can
access critical information in the shortest possible time.

Fig. 1: A sample of data differences.

In our system design, to ensure the quality of user expe-
rience as much as possible, we have introduced a solution
that integrates LSTM, differential anomaly detection, and
historical data interpolation. Fig. 2 illustrates our overall
design: wireless sensors collect sensing data in their respective
environments, and the central device trains sensor data pre-
dictors in different scenarios. Based on the predicted results
of data trends and user restrictions on data upload time, the
central device determines the optimal time for wireless sensors
to establish wireless connections with the central device to
upload data. When sensors do not upload data, Planner tem-
porarily substitutes the predicted values of the predictor for
the uploaded data of the sensors until the sensors upload real
data and then updates the historical data through interpolation.
Even if the data predictor predicts a gentle trend in future
data changes, Planner still considers the user’s settings for
data timeliness and the minimum upload frequency to select
the appropriate upload time points to timely update the data
predictor and historical data.

Another key insight is that, when the data trend is relatively
gentle, the sensor’s data will not undergo drastic fluctuations
or very small changes in the next few time steps. As shown in
Fig. 1 , this scenario accounts for a considerable proportion of
the data uploaded by sensors, ensuring the precision of the data
prediction and historical data updates, and providing a basis
for the algorithm to adaptively adjust the upload frequency
based on data trends.

B. Details of Predictor

In designing our data predictor, we focus on capturing
variations in time series data to achieve high-precision data
predictions. Since most sensors used for environmental aware-
ness naturally produce time series data, Long Short-Term
Memory (LSTM) networks are an ideal choice. LSTM net-
works leverage the strengths of recurrent neural networks to
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Fig. 2: System overview.

process sequential inputs, dynamically training the model to
adjust parameters, and capture sequence variations in the data.

As illustrated in Fig. 2, our predictive model consists of
two LSTM layers, a fully connected layer, and a linear layer,
delivering predictions through a ReLU activation function.
Specifically, the hidden size of the LSTM layers is set to 50,
with a dropout regularization rate of 0.2 to prevent overfitting.
During the training process, we employ the Adam optimization
algorithm and use the Mean Squared Error (MSE) as the loss
function, with an initial learning rate set to 0.001.

In the fully connected layer, we set the number of neurons
to (hidden size + output size) // 2 to balance the complexity
of the inputs and outputs with computational efficiency. This
architectural design aims to fully exploit the time series
processing capabilities of LSTM, ensuring that the model
accurately captures the dynamic changes in sensor data, thus
providing high-quality predictions.

C. Planner & QoE Design

In the Planner section, Algorithm 1 illustrates the oper-
ational workflow of the entire algorithm. The data center
database stores all the data uploaded by wireless sensors and
the data temporarily filled by the algorithm. For each appli-
cation scenario, the data center trains the predictors for the
sensors. The Planner predicts future time steps based on inputs
from a historical time window and computes thresholds using
the difference values over a recent period and an anomaly
detection sensitivity. The threshold calculation involves the
absolute mean difference value of the data differentials over a
recent period multiplied by the standard deviation of these
differentials. The authenticity of this data trend change is
crucial for users who focus on the evolution of data trends
rather than the magnitude of data changes. Such changes in
data trends may signify the occurrence of abnormal events. To

Algorithm 1 Predict & Plan

Input: History Data D, time windows w, predict model m,
max interval Imax, anomaly detection sensitivity s, filtering
parameter f

Output: If the next time step upload
Scaled data D
Initialize time windows w ⇐ D
while true do

if Received the real data then
if Exist values in D that were replaced with predicted
values then

Interpolate these values in D with real data
end if

end if
Calculate the next time step values with w and m
Calculate the diff threshold with w and s
if current diff(xpredict

i+1 − xi) > threshold then
if current diff and w satisfied f then

return True
end if

else
if Time interval satisfied Imax or user’s setting then

return True
end if

else
Update D and w with xpredict

i+1

end if
To next time step
return False

end while
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address this, a filtering parameter is used to filter out minute
changes based on the standard deviation, ensuring that they
do not disrupt other processes.

argmax
I

−
(
αNtotal + β

∑
(Tupload − Tanormal)

)
,

subject to I < Imax.
(1)

The formula 1 illustrates the QoE objectives that we aim to
optimize. Here, Ntotal denotes the total number of uploads,
Tupload represents the closest upload step to the anomaly time
step Tanormal, and α and β signify the weights that affect
user QoE. I signifies the interval between data uploads, and
Imax is determined by user settings and model errors. QoE
design aims to reflect the user experience as quantitatively
as possible. In the context of wireless sensor applications,
users prefer to minimize data transmission frequencies due
to associated maintenance overhead. Simultaneously, users
want prompt access to all critical data to mitigate potential
losses caused by environmental anomalies detected by sensors.
In addition, users can customize the maximum data upload
interval to ensure a minimal data acquisition frequency.

Based on the above considerations, the Planner selects fu-
ture transmission times while taking into account QoE and user
settings. During periods of sensor data nontransmission, the
Planner temporarily substitutes sensor data with predictions
from the data predictor. Recognizing potential cumulative
errors in model predictions, the Planner sets a maximum
upload interval based on user preferences and deviation from
model predictions. Beyond this interval, the Planner schedules
data uploads from sensors. Upon receiving actual sensor data
uploads, the data center interpolates the data replaced by
the predictor between actual values, promptly updates model
parameters, and ensures adaptive system adjustments over time
to maintain data prediction accuracy and optimize user QoE.

IV. EVALUATION

A. Dataset and Experiment Settings

Our study uses a dataset collected between January and
May 2016 from a residential building in Belgium, using a
Zigbee sensor network [3]. The dataset includes data from nine
temperature and humidity sensors placed at various locations
within the building and an outdoor wind speed sensor. In
addition, it includes outdoor weather data from the nearest
airport. Each sensor in the dataset transmitted data every 10
minutes. For training the predictor and conducting simulation
experiments, we selected data from eight temperature sensors,
eight humidity sensors, and one outdoor wind speed sensor,
resulting in a total of 19,736 data points per sensor. The last
10% of the data was set aside for simulation experiments, and
the remaining data was divided into training, validation, and
testing sets in a 60%, 20%, and 20% ratio, respectively. In
the simulation phase, the algorithm was executed sequentially
over time. The maximum upload interval was set to 6 time
steps, the sensitivity coefficient to 3, and the historical time
window size to 10 time steps. The predictor’s forecast values

were replaced with actual data values to serve as the ground
truth for evaluating the algorithm’s performance.

In the following sections, we will gradually present the
performance of our predictor and the experimental results,
along with an analysis of the algorithm’s effectiveness con-
sidering QoE. Our results demonstrate that, compared to the
fixed periodic data transmission mode typically used in most
current wireless sensor scenarios, our algorithm provides a
superior energy-saving data transmission scheme while taking
user QoE into account.

B. Evaluation of Predictor Performance

This section discusses the prediction performance of sensor
data predictors across different types and scenarios. We use
historical data from sensors over ten time steps as input, which
is standardized using Z-score before prediction. Our primary
goal is to schedule wireless sensor data uploads to meet user
QoE based on trends in each sensor data.

Fig. 3: MSE of different predictor.

Fig. 4 shows the prediction performance of predictors
for different types of sensors on the test dataset. The re-
sults demonstrate that our predictor architecture effectively
captures the development trends of various data types and
provides accurate predictions. Besides, we observe that while
most environmental monitoring data exhibit minimal short-
term variation, long-term patterns are complex, potentially
impacting recursive predictions over multiple time steps. Fig.
3 illustrates the Mean Squared Error (MSE) of predictors
on standardized data for different types of sensors. In the
figure, ”others” denotes sensors that include outdoor weather
data such as wind speed. For most sensor data, predictors
achieve an acceptable accuracy. However, temperature sensors
exhibit larger errors compared to other sensors. A plausible
explanation is that temperature sensors are placed in various
locations within the home, such as bathrooms and ironing
rooms, where temperature variations can be more abrupt,
so affecting the overall predictor performance. Overall, the
effectiveness of predictors in different types and scenarios
suggests that scheduling wireless sensor data uploads based
on trends in data variation is feasible to improve user QoE.
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(a) Temperature predictor (b) Humidity predictor (c) Windspeed predictor

Fig. 4: Performance of the predictor samples for temperature, humidity, and windspeed on the test dataset.

C. Simulated performance of scheduling

Fig. 5: eCDF of MAE for different predictor.

This section presents the simulation results of our schedul-
ing algorithm on real datasets. Fig. 6 compares the simulated
data curves obtained by our scheduling planner with the actual
data curves and shows the selected data upload time points of
wireless sensors under QoE constraints. The algorithm predicts
future data trends based on historical data. When the planner
detects that the data differ from previous trends, it increases
the upload frequency of the wireless sensor. Meanwhile, when
the data trend is stable, the planner periodically schedules
the wireless sensor to upload data to meet the predictor’s
correction and the user’s personalized settings. The results
indicate that, for most time points, even without uploading
data, the simulated data curve by the data center algorithm
can still fit the actual data trend well. The selected upload
time points effectively capture moments with important data
trend changes. When the data trend slope tends to remain
unchanged, the algorithm can detect very slight trend changes
and schedule sensor uploads to confirm the real situation.
Fig. 5 shows the eCDF of MAE between the simulated data
curves and actual data curves for different scenarios and types
of wireless sensors. The data is denormalized back to actual
environmental sensor data such as temperature, humidity, and
wind speed. The results show that 80% of different types of
sensors have an MAE of less than 0.04, with a maximum error
of less than 0.07. For most application scenarios, this error
is almost negligible. Besides, the results demonstrate that for

users, the algorithm can reduce the energy consumption of
wireless sensors without significantly altering the accuracy of
the original data. Users can access historical data at any time
through the data center, even if the sensor did not upload real
data at that time, which demonstrates the effectiveness of our
algorithm.

D. Evaluation of QoE

TABLE I: QoE metrics for different type of sensors.

Type Avg Max Min Median(mins)

Temperature 1043.75 1579 377 5.0
Humidity 1272.75 1512 989 6.25
others 1196.83 1590 655 6.7

This section evaluates the QoE, consistent with the QoE
optimization objectives defined in Chapter 3. We identify the
primary objective parameters that influence the user experi-
ence, such as the total number of uploads and the time interval
to detect anomalous data. In our algorithm design, we account
for user-defined transmission frequency settings, and prior
experimental results demonstrate the data center’s capability
to generate usable data even when sensors do not transmit
real-time data. Therefore, objective parameters are considered
important in shaping the quality of the user experience. Table
1 presents the experimental results of our algorithm’s efforts
in optimizing user QoE.

The QoE experiments were conducted on a dataset with
a time-step interval of 10 minutes and a total of 1973 time
steps. Here, “Avg”, “Max”, and “Min”, respectively, denote
the average, maximum and minimum reductions in uploads
compared to a fixed interval upload strategy. The “median”
represents the median upload delay for anomalous data trends.
The results indicate that our algorithm importantly reduces
upload frequencies, thereby reducing energy consumption for
wireless sensors. Even the minimal reductions in upload
frequency are noteworthy. The average median upload delay
demonstrates our ability to upload data within a median
delay of less than one time step compared to a fixed-interval
transmission strategy, which justifies the reduction in energy
consumption. Furthermore, because of our model’s accurate
predictive capabilities, users can accurately access data for
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Fig. 6: A sample of scheduled data collection.

time steps with anomalous trends, even if they were not
uploaded. In summary, the experimental findings demonstrate
that our approach effectively reduces sensor data upload fre-
quencies while meeting user QoE requirements, thus validating
the efficacy of our method.

V. CONCLUSION

This study identifies that traditional fixed interval upload
strategies in low-power wireless sensor networks [29], [30]
incur high maintenance costs and inefficient utilization of
transmitted data, which diverge importantly from user re-
quirements. To address this issue, we propose a sensor up-
load scheduling method for wireless sensor networks aimed
at reducing the frequency of sensor data uploads to lower
the energy consumption associated with data transmission,
ultimately enhancing user QoE. Additionally, we introduce a
series of methods to ensure consistency between the reduced
upload frequency system and the original system’s data acqui-
sition. Simulation experiments demonstrate that our approach
offers a plug-and-play solution without altering the existing
wireless sensor network architecture compared to traditional
fixed-interval upload strategies. The algorithm is deployed in
the data center without the need to modify the software or
hardware of the edge device. Our method importantly reduces
the energy consumption of sensor network devices and the
experimental results indicate minimal impact on the integrity
of the data center, ensuring user QoE.

Although our approach effectively reduces the overall en-
ergy consumption of the sensor network and maintains user
QoE, the reduction in the data transmission frequency poses
the risk of missing sudden events. We propose automatic

correction mechanisms to mitigate this issue, yet further opti-
mization is necessary. Finally, this study presents an effective
method to reduce energy consumption in wireless sensor
networks while meeting user QoE requirements. Future work
can build upon this study to further enhance user satisfaction.
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