
Enhancing Large Language Models with
Knowledge Graphs for Robust Question Answering

Zhui Zhu∗, Guangpeng Qi†, Guangyong Shang†, Qingfeng He‡, Weichen Zhang§,
Ningbo Li§, Yunzhi Chen†, Lijun Hu†, Wenqiang Zhang†, Fan Dang§B

∗Department of Automation and BNRist, Tsinghua University, †Inspur Yunzhou Industrial Internet Co., Ltd
‡Department of Computer Science and Technology, Tsinghua University, §Global Innovation Exchange, Tsinghua University

{z-zhu22,heqf21,weic zhang23,lnb23}@mails.tsinghua.edu.cn
{qigp,shangguangyong,chenyunzhi,hljun,zhangwq01}@inspur.com

dangfan@tsinghua.edu.cn

Abstract—In recent years, large language models (LLMs) have
shown rapid development, becoming one of the most popular
topics in the field of artificial intelligence. LLMs have demon-
strated powerful generalization and learning capabilities, and
their performance on various language tasks has been remark-
able. Despite their successes, LLMs face significant challenges,
particularly in domain-specific tasks that require structured
knowledge, often leading to issues such as hallucinations. To
mitigate these challenges, we propose a novel system, SynaptiQA,
which integrates LLMs with Knowledge Graphs (KGs) to answer
more questions about knowledge. Our approach leverages the
generative capabilities of LLMs to create and optimize KG
queries, thereby improving the accuracy and contextual relevance
of responses. Experimental results in an industrial data set
demonstrate that SynaptiQA outperforms baseline models and
naive retrieval-augmented generation (RAG) systems, demon-
strating improved accuracy and reduced hallucinations. This
integration of KGs with LLMs paves the way for more reliable
and interpretable domain-specific question answering systems.

Index Terms—Artificial Intelligence, Knowledge Graph, Large
Language Model

I. INTRODUCTION

With the rapid development of natural language processing
(NLP) technology, large language models (LLMs) such as
GPT-3 [1] and BERT [2] have demonstrated outstanding
performance in various language tasks. These models, through
pre-training and fine-tuning, are capable of achieving impres-
sive results in tasks such as text generation, question answer-
ing, and language translation [1]–[3]. Leveraging massive pre-
training data and complex deep learning architectures, these
large language models can capture complex linguistic patterns,
making them perform better in many NLP tasks compared with
other models [4], [5].

However, despite the impressive performance of large lan-
guage models across a wide range of tasks, they still face
several significant challenges. One notable challenge is that
large language models primarily rely on large-scale text data
for training, which result in suboptimal performance when
dealing with domain-specific task [5]. large language models
lack a deep understanding of structured knowledge and they
perform not good for the questions which require accurate

BFan Dang is the corresponding author.

and reliable domain knowledge [6]. Large language models
primarily rely on statistical learning to generate answers, rather
than being based on explicit knowledge bases or external
information sources [7]. This leads the problem of nonsensical
or unfaithful answer, also called ”hallucinations”, ultimately
affecting their practical application [6], [8].

Hallucinations typically refer to the phenomenon where
generated content appears absurd or inconsistent with the
provided source material [6]. This issue has widespread im-
plications across various applications, particularly in fields
that demand high accuracy of results, such as medicine and
industry.

The utilization of retrieval-augmented generation (RAG)
techniques presents a solution for reducing hallucination. RAG
techniques retrieve information from data sources to assist
large language models in generating answers, enabling the
models to access external sources of information and produce
more accurate responses [7]. In existing RAG methods, ex-
ternal information is typically encoded as vector data. And
semantic similarity is leveraged to retrieve relevant document
passages from external knowledge repositories. This process
enhances the performance of the large language model by
incorporating the retrieved information [7].

However, when data is processed and stored as vectors, the
relationship between the context is often lost, and relationships
between data points can become particularly ambiguous [9].
Additionally, the effectiveness of the RAG methods heavily
relies on the segmentation of the document chunks, as incor-
rect or inappropriate document segmentation can significantly
impact its effectiveness [9].

Knowledge Graph (KG), as a structured knowledge rep-
resentation method, is capable of effectively organizing and
storing a large amount of domain knowledge [10]. By repre-
senting entities and their relationships in the form of nodes
and edges, KGs serves as an intuitive and efficient knowledge
management tool, like Wikidata [11] and YAGO [12]. KGs
not only capture complex relationships and attributes of the
data but also enable reasoning and querying through graph
algorithms, providing more accurate and reliable knowledge
support.

The integration of KG with LLM holds the potential to

262

2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS)

DOI 10.1109/ICPADS63350.2024.00042

20
24

 IE
EE

 3
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 P
ar

al
le

l a
nd

 D
is

tri
bu

te
d 

Sy
st

em
s (

IC
PA

D
S)

 | 
97

9-
8-

33
15

-1
59

6-
6/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
PA

D
S6

33
50

.2
02

4.
00

04
2

979-8-3315-1596-6/24/$31.00 ©2024 IEEE



Generating
Answer

Vector Database

Retrieval Generating
Answer

Knowledge Graph

Entity/Relation
Retrieval Generating

Answer

Query

Generating
AnswerOptimized

Query

1. LLM-only

2. Vector-retrieval

3. KG-retrieval

4. Ours
Retrieval

Fig. 1. A comparison between our system and other baseline system

enhance the knowledge usage of the models, improve their un-
derstanding of contextual information of the data and generate
interpretable results. Due to the advantages of KG, researchers
are attempting to integrate them in order to compensate for
certain limitations of LLMs [10]. For example, ERNIE [13]
attempts to use the KG triples to improve the training process
of LLMs and KAPING [14] retrieves facts related to the input
question from the KG and inject them to the prompts of LLMs
to generate better output.

However, existing approaches to enhance LLMs with KGs
still have some limitations. These limitations primarily mani-
fest in the inefficient utilization of knowledge within the graph
and the high complexity of querying the knowledge graph.

A straightforward approach is to directly utilize LLMs to
query KGs. This is feasible because LLMs have robust gen-
erative and generalization capabilities, making such a method
viable. However, we observed that during the generation pro-
cess, the sentences produced by LLMs are highly unstable and
not suitable for direct querying. Moreover, knowledge graphs
are highly sensitive to the input queries, making precision in
query formulation crucial.

To address above challenges, we propose SynaptiQA, a
novel system that combines LLMs and KGs for collaborative
knowledge question answering. We have repeatedly used large
models and knowledge graphs, and innovatively leverage the
capabilities of LLMs to generate knowledge graph queries and
employ word embedding techniques to optimize the queries.
SynaptiQA fully harnesses the strong generalization and com-
prehension abilities of LLMs, along with the accuracy and
contextual information advantages of KGs.

We conducted experiments on an industrial dataset, which
includes a knowledge graph with over 3,000 nodes and more

than 10,000 relationships. Our system demonstrated superior
performance in terms of BERTScore compared to the naive
RAG system and large models without knowledge enhance-
ment. Specifically, our system achieved accuracy improve-
ments of 0.26 and 0.03 over the large model without knowl-
edge enhancement and the naive RAG system, respectively.

In conclusion, we propose SynaptiQA to improve the per-
fomance of KGQA problem. SynaptiQA fully leverages the
generation capability of LLMs and use word embedding to
enhance the efficiency and quality of knowledge graph queries.
Our system overperforms the baseline system and reduce the
hallucinations in domain-specific KGQA problem.

II. BACKGROUND

A. Large Language Model

Large Language Models (LLMs) are complex natural lan-
guage processing models based on deep learning techniques,
particularly the Transformer [15] architecture. Models like
GPT-3 [1], LLAMA [3], [16], and BERT [2] have been
trained on large-scale text data and are capable of generat-
ing high-quality natural language and understanding complex
language tasks. By learning the relationships between words,
these models perform exceptionally well on various natural
language processing tasks. However, despite their impressive
performance in language generation and understanding, LLMs
still face challenges such as accuracy of results and limitations
in domain-specific questions.

B. Prompt Engineering

Prompt engineering has emerged as a pivotal technology as
the development of LLMs. It refers to the process of designing
and optimizing input prompts to guide language models in
generating desired outputs [17], [18]. This technique plays a

263



significant role in enhancing the performance and application
scope of language models.

The core of prompt engineering lies in constructing effective
prompts that can fully leverage the knowledge and capabilities
embedded within pre-trained models. By meticulously crafting
these prompts, researchers and engineers can significantly
improve the performance of models on specific tasks without
requiring additional training.

Researchers have proposed various strategies, including
manually designing prompts [1], [19], automating prompt
generation [20], and optimizing prompts for multiple tasks.
These approaches not only enhance the practical utility of
models but also uncover the intricate semantic structures
and knowledge representation mechanisms within pre-trained
models.

C. Knowledge-Augmented LLMs

For LLMs, it is currently not possible to store all the knowl-
edge in the world, and they often suffer from ”hallucination”
problems when dealing with domain-specific questions [6],
[8]. To address these limitations of LLMs, researchers have
proposed Knowledge-Enhanced Language Models (KELMs)
[21], [22]. These models enhance their semantic understanding
and reasoning capabilities by incorporating external sources
of knowledge. These external knowledge sources can include
structured knowledge such as knowledge graphs or unstruc-
tured information like Wikipedia [23]. KELMs can provide
more accurate answers to questions involving domain-specific
knowledge and improve the credibility and consistency of their
responses. Common approaches include embedding informa-
tion from knowledge bases into the input representation of
large language models or dynamically querying [24], [25] and
utilizing external knowledge during the model’s generation
process [26], [27].

D. Knowledge Graph

Knowledge Graph (KG) is a graph data system used to
represent and store structured knowledge. It often consists
of nodes (representing entities) and edges (representing re-
lationships between entities) and is often represented in the
form of triplets to denote knowledge. In addition to entities
and relationships, KG includes rich semantic information,
hierarchical structures, and inference rules, enabling efficient
querying and reasoning through knowledge. Compared to
other knowledge storage methods, like vector databases, KGs
can store complete contextual information and allow for query-
ing using graph structures [10]. Leveraging these advantages,
Knowledge Graphs have found widespread applications in
fields such as search engines [28], [29], recommendation
systems [30], and intelligent question answering [31], [32].

E. Knowledge Graph Question Answering

Knowledge Graph Question Answering (KGQA) refers to
the technology that utilizes KGs to answer natural language
questions [10], [33]. The core of a KGQA system lies in
correctly mapping the natural language question to relevant

Entity Check

Question

Initial
Cypther

Regularization
Rule

Prompt
about KG

LLM Check

Optimized
Cypher

Retrieval 
Results

Answer

Fig. 2. Architecture of our System

entities and relationships within the Knowledge Graph, and
retrieving accurate answers from it. KGQA systems typically
involve steps such as natural language understanding, Knowl-
edge Graph querying, and answer generation.

Previous research has proposed various approaches to en-
hance the performance of KGQA, such as neural semantic
parsing [34], [35], information retrieval [36], and differentiable
knowledge graph [37].

The development of LLMs has provided new opportunities
for KGQA research. LLMs possess powerful abilities in text
comprehension and knowledge reasoning, which have greatly
improved the performance of KGQA. ChatKBQA [38] utilizes
large language models to transform textual questions into
logical forms, which are then used for querying the knowledge
graph. KAPING [14] embeds the information of knowledge
graph triplets into prompts of LLMs.

However, existing methods have limitations in harnessing
the full potential of large language models. They either rely
on these models solely for answering questions without fully
leveraging their capabilities. Additionally, current approaches
often focus on utilizing only the triplet information of the
knowledge graph, overlooking its rich hierarchical information
such as attribute details and graph structure. Therefore, based
on these observations, we propose the SynaptiQA model.
SynaptiQA directly utilizes the large language model to gener-
ate graph query based on the input questions. It then optimizes
the query statements using the graph information and extracts
precise information from the knowledge graph to generate the
final answer.

III. SYSTEM

Our system consists of four main components: query gener-
ation, query optimization, KG querying, and QA result gener-
ation. In the first two steps, we leverage the LLMs’ powerful
generalization capabilities to directly generate and optimize
the query statements for KG retrieval. Then, combining the
retrieval results from the KG, we utilize the LLMs to obtain the
final answer. The following sections describe each component
in detail and how they interconnect to produce accurate QA
results.

A. Query Generation

To fully leverage the generative capabilities of large models,
we directly utilize them to generate query statements. During
the generation process, in order to ensure that the generated

264



statements meet the requirements of KG queries, we integrate
common querying methods of KGs and embed this informa-
tion into the input of the large language model using prompt
engineering.

We will extract common query statement formats and key-
word formats from the related manual of KG. Additionally,
we will retrieve the types of nodes and relationships, as well
as potentially useful attribute keywords, from the KG we are
using.

However, for a knowledge graph, there are numerous feasi-
ble query types and use cases, which can make it challenging
for the model to determine how to utilize them effectively.
Additionally, an excessive number of rules can degrade the
model’s performance. Therefore, we will search historical data
to find problems similar to the current issue and use the
corresponding query statements as few-shot data.

B. Query Optimization

The queries generated by the large model may not directly
apply to the knowledge graph due to three main reasons:
(1) The generated responses may include irrelevant content,
such as ”Here is the Cypher I generated.” (2) The generated
query statements may contain syntax errors. (3) The content
being queried may not exist within the knowledge graph.
To address these three issues, we implemented the following
optimizations:

Statement Optimization: To tackle the redundancy in the
answers generated by large models, we designed a regulariza-
tion method to achieve the truly effective parts of the query
statements. And we use LLM to clean the query statement one
again. We then validated the effectiveness of these statements
based on predefined rules. Furthermore, we utilized open-
source code [39] to verify and correct the direction of the
query statements.

Query Validity Verification: The KGs are highly organized
and structured data model. This characteristic allows them to
retain a vast amount of information effectively and allows them
for the efficient utilization of its structure for searching. How-
ever, it also makes the KG itself challenging to manipulate.
To address this, many researchers have delved into the field of
knowledge graph embedding (KGE) [40], [41]. The key idea
is to embed the components of the KG, including entities and
relationships, into continuous vector spaces, thereby simplify-
ing operations while preserving the original graph structure of
the KG. Nevertheless, traditional word embedding systems are
typically designed for direct querying and do not differentiate
between relations and attributes, making them unsuitable for
our task of optimizing query statements generated by LLMs.

Therefore, we have specifically improved KGE for our
purposes. First, we embed all information from the knowledge
graph, including all entities, relations, and attributes, using the
m3e model. During querying, we analyze the query content
to extract all relevant information. For each entity and rela-
tion, we utilize their embedding vectors for comparison and
analysis. Unlike most embedding methods, we assign separate
embedding vectors to each attribute, ensuring flexibility in

selecting the most similar knowledge graph elements based
on the query statements generated by the LLMs.

Based on the identified similar knowledge graph elements,
we use the LLMs to select the most appropriate query option,
replacing the original query content to generate the final query
statement.

C. KG Query and Answer Generation

We utilize the optimized query statements to query KG.
Compared to other methods that utilize knowledge graphs,
such as querying entity neighborhood information [42], our
approach offers greater flexibility in generating queries and
retrieval requirements based on the specific context of the
problem. For relatively simple questions, we generate straight-
forward query statements, like MATCH (n1:Fault name con-
tent:’Cold Trough’)-[:relation]-(n2:Maintenance action) RE-
TURN n2.content. And for more complex questions, we
leverage the inferential capabilities of large models to
directly generate intricate queries. For example, MATCH
(p1:Fault name content:’Cold Trough’),(p2:Normal status),
p=shortestpath((p1)-[∗..10]- (p2)), RETURN p. This approach
avoids the insufficiency of neighborhood information in ad-
dressing complex issues.

Subsequently SynaptiQA employs LLM to generate the final
QA results. Apart from the template, the prompt includes
all information retrieved from the knowledge graph and the
original question. If the knowledge graph returns no results,
we allow the large language model to provide an answer based
on its own knowledge, along with a confidence level. By
embedding both the results of the KG query and the original
question into the output of the LLMs, we generate the final
answer.

IV. EVALUATION

A. Experiment Setting

1) Implementation: Our entire system is built using the
LangChain [43] development framework, with the KG im-
plemented using Neo4j [44]. The management and querying
of the knowledge graph are performed using the Cypher
language.

2) Data: For the document data, we utilized industrial
data collected by ourselves and generated a KG by inte-
grating LLMs with human expertise. This KG comprises
3,224 nodes and 13,312 relationships, with each node and
relationship including additional attribute information. Regard-
ing the question-answering aspect, we conducted experiments
using 209 manually crafted questions. These questions and
corresponding data pertain to operating procedures, production
processes, and process mechanisms.

3) Model: The word embedding model we employed is the
m3e-large [45] model, and the large-scale model was tested
using Qwen-4B [46].

4) Metrics: We employ two evaluation metrics to assess
our system:

BERTScore: BERTScore [47] evaluates the similarity be-
tween the output and the actual data source by using the cosine

265



TABLE I
MAIN RESULT

Method Kimi Accuracy BERTScore

Vector-retrieval 0.7033 0.7830
LLM-only 0.4737 0.6730

KG-retrieval 0.6077 0.7340
SynaptiQA 0.7368 0.8012

TABLE II
RESULTS IN DIFFERENT FIELDS

Dataset

Method Operating
Procedure

Process
Mechanism

Production
Process

Vector-retrieval 0.6990 0.8286 0.6479
LLM-only 0.4757 0.4571 0.4789

KG-retrieval 0.5340 0.77140 0.6338
SynaptiQA 0.7476 0.8857 0.6479

similarity of the embedding encodings generated by the BERT
[2] model.

Kimi Accuracy: Kimi Accuracy leverages the Kimi [48]
LLM to align the generated results with the actual data source,
determining whether the generated answers fully match the
actual data source.

BERTScore takes into account contextual and semantic
information, allowing for a more accurate measurement of
sentence similarity, especially for sentences that are seman-
tically similar but expressed differently. However, BERTScore
may still produce erroneous judgments for some results and
lacks a precise characterization. Kimi Accuracy uses a LLM as
an evaluation metric, which can provide a better assessment.
Nevertheless, due to the model’s sensitivity to prompts, it
can only serve as a reference metric. By combining both
metrics, we can achieve a more comprehensive evaluation of
our system.

5) Baseline Model: Our system will be compared with the
following systems:

Vector-retrieval: Utilizing a vector database to store docu-
ment data. During the question-answering process, the ques-
tion is first converted into a vector form, relevant documents
are retrieved from the database, and finally, the LLM is used
to generate the answer.

KG-retrieval: Employing a KG to store document data.
When answering the question, the LLM is used to extract
entities. The attributes of the entities, along with their one-
hop relationships, are queried from the knowledge graph.
All retrieved information is then combined with the LLM to
generate the answer.

LLM-only: Directly utilizes a large language model without
leveraging a knowledge graph or data base for answering
questions.

B. Main Result

The primary results are presented in Table I. Comparatively,
our method achieves the highest scores in both BERTScore and

TABLE III
ABLATION STUDY RESULT

Method Kimi Accuracy BERTScore

LLM-only 0.4737 0.6730
KG-query 0.5407 0.7094
SynaptiQA 0.7368 0.8012

Kimi Accuracy metrics, with a Kimi Accuracy of 0.737 and a
BERTScore of 0.801, outperforming the other four baseline
methods. Specifically, the LLM-only method performs the
worst, with an accuracy of only 0.474. This is mainly because,
for industrial datasets, many pieces of knowledge are not in-
cluded in the pre-training process of LLMs, such as knowledge
encompasses details in industrial production and proprietary
knowledge within enterprises. Therefore, knowledge augmen-
tation for domain-specific problems has significant application
value.

Among the various knowledge augmentation methods, the
Vector-retrieval method performs second best, with an ac-
curacy of 0.703 and a BERTScore of 0.783, whereas the
performance of KG-retrieval methods is relatively less im-
pressive. To explain this phenomenon, we conducted further
observations. Although the KG-retrieval method can ensure the
retrieval of relevant results, it can only fetch answers within a
single hop and often returns a significant amount of confusing
information. In contrast, our method effectively leverages both
the generation capabilities of large models and the structured
querying capability of knowledge graphs, thereby providing
more accurate responses.

C. Results in different fields

Furthermore, we evaluated the results of questions across
different domains. Our system consistently demonstrated op-
timal performance across various domains, highlighting both
the stability of our system and the feasibility of large model
enhancement based on knowledge graphs.

Among all the domains, knowledge augmentation showed
the most significant improvement in the area of process mech-
anisms. This is likely because knowledge in process mecha-
nisms demands the highest accuracy, and the documentation
and graphs related to this area are most clearly described. Con-
sequently, the knowledge augmentation approach significantly
enhances the application capability of large models in this
domain.

In every domain, the knowledge augmentation approach
improved the efficiency of large models, underscoring the
necessity of using knowledge augmentation in industrial con-
texts.

D. Ablation Study

To further verify our system design, we designed an ablation
experiment with the KG-query method (Table III). KG-query
uses a KG to store document data and employs the LLM
to generate query statements. These query statements are not

266



optimized. The output from the KG is then combined with the
LLM to generate the answer.

As discussed in Section 3.2, queries generated by large
models are often unstable. When these generated queries are
directly used for knowledge graph retrieval, they frequently
return an empty set, meaning no results are found, leading to
the poor performance of the KG-query method.

Meanwhile, our design effectively mitigates the instability
of queries generated by large models. By integrating knowl-
edge graphs and query rules, we enhance query effectiveness,
thereby improving the overall system performance.

V. RELATED WORK

A. Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is an approach that
combines retrieval and generation techniques to enhance the
performance of generative models by retrieving relevant infor-
mation from external knowledge bases [7]. The core idea of
the RAG method is to use a retrieval module to obtain relevant
documents or fragments from a pre-constructed knowledge
base, and then integrate these retrieved pieces of information
with the input to the generative model to produce more
accurate and information-rich responses [7], [49], [50]. The
RAG method excels in tasks requiring external knowledge,
such as open-domain question answering, dialogue systems,
and knowledge-intensive text generation.

Typically, this approach follows a traditional workflow that
includes indexing, retrieval, and generation steps [7], [49],
[50], often described as the ”retrieve-read” framework [51].
In RAG, the retrieval module is responsible for identifying
documents or fragments relevant to the input query from a
large knowledge base, commonly using vector databases (such
as chroma [52] and Pinecone [53]) and vector-based retrieval
methods.

Existing researchers are exploring ways to enhance the
performance of RAG systems by improving the traditional
retrieval methods through techniques such as pre-retrieval [51],
[54], [55], post-retrieval [56], and modular RAG approaches
[57], [58]. Additionally, some researchers are investigating
how to more closely integrate large model fine-tuning with the
RAG pipeline to enable the large model to acquire knowledge
related to RAG retrieval during the training phase [59], [60].

B. Traditional KGQA Systems

[34] employs neural network-based models to parse and
interpret the semantics of natural language questions. Sub-
sequently, it decomposes the natural language question into
multiple subtasks, and progressively constructs a query graph.
Each stage generates a partial query graph, with these par-
tial graphs ultimately combining to form a complete query
graph. [35] also utilizes the same paradigm, employing neural
networks to encode both the natural language questions and
the knowledge graph.However, due to the lack of semantic
representation capabilities in traditional deep neural networks,
these methods have not achieved satisfactory accuracy on
KGQA problems.

C. LLM Based KGQA Systems

The powerful capabilities of LLMs have given KGQA
greater potential, so many researchers have begun to ex-
plore the combination of the two [14], [26], [38]. Among
them, ChatKBQA [38] employs large language model to
first generate logical form and then retrieve information from
knowledge graph to assist question answering tasks. However,
ChatKBQA’s way of generating logical form may not fits
knowledge graph’s reasoning process, causing hallucination in
large language model’s final response. KAPING [14] offers a
framework for identifying triples relevant to a given question,
thereby extracting pertinent information from the knowledge
graph to assist a large language model in generating responses.
However, both methods fail to align the language model with
knowledge graph’s structure, thus may fail to retrieve truly
correct information from knowledge graph.

VI. FUTURE WORK

For future work, we plan to investigate the possibility of
combining knowledge graphs and vector databases to enhance
the inference stage of large language models. While knowl-
edge graphs have certain advantages over vector databases,
the latter possess a vast capacity for information. Therefore,
exploring the synergy between these two primary knowledge
sources holds promise. Current work necessitates a fine-tuning
process to align the model with the knowledge graph, and
the quality of question-answering in large language models is
closely associated with the quality of the knowledge graph.
We intend to reconstruct the knowledge graph based on the
feedback from large language models during the fine-tuning
process, thereby obtaining knowledge that better aligns with
the preferences of large language models.

On the other hand, our current application of large models
remains relatively simple. Moving forward, we aim to leverage
the strong reasoning capabilities of large models to further
enhance the performance of KGQA. We can employ more
advanced prompting methods, such as Chain of Thought
(CoT) [19] and Tree of Thought (ToT) [61], to stimulate
the reasoning processes of LLMs and reveal their inference
paths based on the knowledge graph. Furthermore, we intend
to explore the joint training of knowledge graphs and large
models. By fine-tuning, we aim to integrate the knowledge
and querying methods of the knowledge graph into the LLM,
thereby enabling better synergy between large models and
knowledge graphs.

VII. CONCLUSION

We propose SynaptiQA to optimize the effectiveness of
end-to-end question answering tasks and reduce hallucina-
tions. SynaptiQA leverages large language model and word
embedding to enhance the efficiency and quality of knowledge
graph queries. By incorporating the structured knowledge of
knowledge graphs into the inference process of LLM, this
approach mitigates hallucinations in domain-specific question
answering task and improves the quality of responses. The
system is test on an industrial dataset and overperform other

267



baseline methods on both BERTScore and Kimi Accuracy
metrics.

We promote the alignment of large language models with
structured knowledge graphs through word embedding and
fine-tuning, demonstrating the vast potential of combining
large language models with structured knowledge. Further, the
success of SynaptiQA illustrates that structured knowledge
graphs can better support the inference of large language
models in complex tasks compared to vector knowledge
databases.This may be attributed to the current limitations of
large language models’ reasoning capabilities for more com-
plex tasks. The inherent logical chains of knowledge graphs
can assist in reasoning, a capacity that vector knowledge
databases lack.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[4] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, vol. 56, no. 2, pp. 1–40, 2023.

[5] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[6] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin et al., “A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions,”
arXiv preprint arXiv:2311.05232, 2023.

[7] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and
H. Wang, “Retrieval-augmented generation for large language models:
A survey,” arXiv preprint arXiv:2312.10997, 2023.

[8] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[9] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody, S. Truitt,
and J. Larson, “From local to global: A graph rag approach to query-
focused summarization,” arXiv preprint arXiv:2404.16130, 2024.

[10] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying
large language models and knowledge graphs: A roadmap,” IEEE
Transactions on Knowledge and Data Engineering, 2024.

[11] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowl-
edgebase,” Communications of the ACM, vol. 57, no. 10, pp. 78–85,
2014.

[12] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web, 2007, pp. 697–706.

[13] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie:
Enhanced language representation with informative entities,” 2019.
[Online]. Available: https://arxiv.org/abs/1905.07129

[14] J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language
model prompting for zero-shot knowledge graph question answering,”
2023. [Online]. Available: https://arxiv.org/abs/2306.04136

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[16] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar,
A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama:
Open and efficient foundation language models,” 2023. [Online].
Available: https://arxiv.org/abs/2302.13971

[17] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.13586

[18] S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li,
A. Gupta, H. Han, S. Schulhoff, P. S. Dulepet, S. Vidyadhara, D. Ki,
S. Agrawal, C. Pham, G. Kroiz, F. Li, H. Tao, A. Srivastava, H. D.
Costa, S. Gupta, M. L. Rogers, I. Goncearenco, G. Sarli, I. Galynker,
D. Peskoff, M. Carpuat, J. White, S. Anadkat, A. Hoyle, and P. Resnik,
“The prompt report: A systematic survey of prompting techniques,”
2024. [Online]. Available: https://arxiv.org/abs/2406.06608

[19] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits
reasoning in large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2201.11903

[20] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and
J. Ba, “Large language models are human-level prompt engineers,”
2023. [Online]. Available: https://arxiv.org/abs/2211.01910

[21] L. Hu, Z. Liu, Z. Zhao, L. Hou, L. Nie, and J. Li, “A survey of
knowledge enhanced pre-trained language models,” IEEE Transactions
on Knowledge and Data Engineering, vol. 36, no. 4, pp. 1413–1430,
2024.

[22] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai,
J. Sun, M. Wang, and H. Wang, “Retrieval-augmented generation
for large language models: A survey,” 2024. [Online]. Available:
https://arxiv.org/abs/2312.10997

[23] [Online]. Available: https://www.wikipedia.org/
[24] J. Baek, A. F. Aji, and A. Saffari, “Knowledge-augmented language

model prompting for zero-shot knowledge graph question answering,”
arXiv preprint arXiv:2306.04136, 2023.

[25] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie: En-
hanced language representation with informative entities,” arXiv preprint
arXiv:1905.07129, 2019.

[26] Y. Wen, Z. Wang, and J. Sun, “Mindmap: Knowledge graph prompting
sparks graph of thoughts in large language models,” arXiv preprint
arXiv:2308.09729, 2023.

[27] W. Su, Y. Tang, Q. Ai, Z. Wu, and Y. Liu, “Dragin: Dynamic retrieval
augmented generation based on the real-time information needs of large
language models,” arXiv preprint arXiv:2403.10081, 2024.

[28] P. Wang, H. Jiang, J. Xu, and Q. Zhang, “Knowledge graph construction
and applications for web search and beyond,” Data Intelligence, vol. 1,
no. 4, pp. 333–349, 2019.

[29] C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for
academic search via knowledge graph embedding,” in Proceedings of
the 26th international conference on world wide web, 2017, pp. 1271–
1279.

[30] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He,
“A survey on knowledge graph-based recommender systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 8, pp.
3549–3568, 2020.

[31] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding
based question answering,” in Proceedings of the twelfth ACM interna-
tional conference on web search and data mining, 2019, pp. 105–113.

[32] J. Jiang, K. Zhou, W. X. Zhao, and J.-R. Wen, “Unikgqa: Unified
retrieval and reasoning for solving multi-hop question answering over
knowledge graph,” arXiv preprint arXiv:2212.00959, 2022.

[33] B. Fu, Y. Qiu, C. Tang, Y. Li, H. Yu, and J. Sun, “A survey on
complex question answering over knowledge base: Recent advances and
challenges,” arXiv preprint arXiv:2007.13069, 2020.

[34] S. W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing via
staged query graph generation: Question answering with knowledge
base,” in Proceedings of the Joint Conference of the 53rd Annual
Meeting of the ACL and the 7th International Joint Conference on
Natural Language Processing of the AFNLP, 2015.

[35] K. Luo, F. Lin, X. Luo, and K. Zhu, “Knowledge base question
answering via encoding of complex query graphs,” in Proceedings of the
2018 conference on empirical methods in natural language processing,
2018, pp. 2185–2194.

268



[36] A. Saxena, A. Tripathi, and P. Talukdar, “Improving multi-hop question
answering over knowledge graphs using knowledge base embeddings,”
in Proceedings of the 58th annual meeting of the association for
computational linguistics, 2020, pp. 4498–4507.

[37] P. Sen, A. Saffari, and A. Oliya, “Expanding end-to-end question
answering on differentiable knowledge graphs with intersection,” arXiv
preprint arXiv:2109.05808, 2021.

[38] H. Luo, Z. Tang, S. Peng, Y. Guo, W. Zhang, C. Ma, G. Dong,
M. Song, W. Lin et al., “Chatkbqa: A generate-then-retrieve framework
for knowledge base question answering with fine-tuned large language
models,” arXiv preprint arXiv:2310.08975, 2023.

[39] “cypher-direction-competition.” [Online]. Available:
https://github.com/sakusaku-rich/cypher-direction-competition/

[40] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding
based question answering,” in Proceedings of the twelfth ACM interna-
tional conference on web search and data mining, 2019, pp. 105–113.

[41] A. Saxena, A. Tripathi, and P. Talukdar, “Improving multi-hop question
answering over knowledge graphs using knowledge base embeddings,”
in Proceedings of the 58th annual meeting of the association for
computational linguistics, 2020, pp. 4498–4507.

[42] “Enhancing rag-based application accuracy by con-
structing and leveraging knowledge graphs.” [Online].
Available: https://blog.langchain.dev/enhancing-rag-based-applications-
accuracy-by-constructing-and-leveraging-knowledge-graphs/

[43] “LangChain,” 2022. [Online]. Available: https://github.com/langchain-
ai/langchain

[44] “Neo4j.” [Online]. Available: https://neo4j.com/
[45] H. s. Wang Yuxin, Sun Qingxuan, “M3e: Moka massive mixed embed-

ding model,” 2023.
[46] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge,

Y. Han, F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin, D. Liu, G. Liu,
C. Lu, K. Lu, J. Ma, R. Men, X. Ren, X. Ren, C. Tan, S. Tan, J. Tu,
P. Wang, S. Wang, W. Wang, S. Wu, B. Xu, J. Xu, A. Yang, H. Yang,
J. Yang, S. Yang, Y. Yao, B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang,
Y. Zhang, Z. Zhang, C. Zhou, J. Zhou, X. Zhou, and T. Zhu, “Qwen
technical report,” arXiv preprint arXiv:2309.16609, 2023.

[47] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675,
2019.

[48] “Kimi,” 2023. [Online]. Available: https://kimi.moonshot.cn/
[49] “What is rag (retrieval-augmented generation)?” [Online]. Available:

https://aws.amazon.com/what-is/retrieval-augmented-generation
[50] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,

H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[51] X. Ma, Y. Gong, P. He, H. Zhao, and N. Duan, “Query rewrit-
ing for retrieval-augmented large language models,” arXiv preprint
arXiv:2305.14283, 2023.

[52] “chroma.” [Online]. Available: https://www.trychroma.com/
[53] “Pinecone.” [Online]. Available: https://www.pinecone.io/
[54] W. Peng, G. Li, Y. Jiang, Z. Wang, D. Ou, X. Zeng, D. Xu, T. Xu,

and E. Chen, “Large language model based long-tail query rewriting
in taobao search,” in Companion Proceedings of the ACM on Web
Conference 2024, 2024, pp. 20–28.

[55] H. S. Zheng, S. Mishra, X. Chen, H.-T. Cheng, E. H. Chi, Q. V. Le,
and D. Zhou, “Take a step back: Evoking reasoning via abstraction in
large language models,” arXiv preprint arXiv:2310.06117, 2023.

[56] V. Blagojevi, “Enhancing rag pipelines in haystack: Introducing diver-
sityranker and lostinthemiddleranker,” 2023.

[57] W. Yu, D. Iter, S. Wang, Y. Xu, M. Ju, S. Sanyal, C. Zhu, M. Zeng,
and M. Jiang, “Generate rather than retrieve: Large language models are
strong context generators,” arXiv preprint arXiv:2209.10063, 2022.

[58] Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen,
“Enhancing retrieval-augmented large language models with iterative
retrieval-generation synergy,” arXiv preprint arXiv:2305.15294, 2023.

[59] T. Zhang, S. G. Patil, N. Jain, S. Shen, M. Zaharia, I. Stoica, and
J. E. Gonzalez, “Raft: Adapting language model to domain specific rag,”
arXiv preprint arXiv:2403.10131, 2024.

[60] Z. Liu, W. Ping, R. Roy, P. Xu, M. Shoeybi, and B. Catanzaro,
“Chatqa: Building gpt-4 level conversational qa models,” arXiv preprint
arXiv:2401.10225, 2024.

[61] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large

language models,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

269




