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Abstract—Federated learning (FL) has been widely adopted as
a privacy-preserving model training paradigm. However, tradi-
tional FL protocol heavily relies on data transmission between
clients and servers across the wide-area network (WAN), which
is tightly constrained and unreliable, therefore causing expensive
communication and slow convergence. To this end, we propose a
LAN-aware FL (LanFL) protocol, which can efficiently leverage
the network capacity of the local-area network (LAN). By
frequent model aggregation among the devices within the same
LAN, we can significantly reduce the global aggregation across
WAN, thus accelerating the training process. However, due to the
unique challenges introduced by LAN, it’s not easy to efficiently
utilize LAN resources while preserving the original dignity of
FL performance. Therefore, LanFL also incorporates several
critical techniques: LAN-aware hierarchical aggregation, intra-
LAN device topology construction, and inter-LAN heterogeneous
bandwidth coordination. Extensive real-world experiments are
conducted and the experimental results show that LanFL can
significantly accelerate FL training up to 6.0×, while preserving
the model accuracy.

Index Terms—Mobile and wireless computing, network topol-
ogy, local-area network

I. INTRODUCTION

Privacy protection is critical to user-centric AI applications,
especially considering the ever-growing public concerns over
user privacy . Federated learning (FL) [1] is a privacy-
preserving machine learning (ML) paradigm that enables a
large number of mobile devices to collaboratively train an ML
model without uploading data to a remote server. This cross-
device FL paradiam has a wide spectrum of use cases such
as input method, voice assistant, and item recommendation
for millions of users. It is a practical solution to strongly
protect user privacy, which makes it valuable to study how
to efficiently deploy FL protocols over large-scale mobile
devices [2].

However, deploying cross-device FL is difficult in many
aspects. From the perspective of devices, the huge consumed
communication bandwidth across wide-area network (WAN)
is one of the most critical challenges for most of existing
FL protocols. Especially, FL deployment typically involves

thousands, or even millions of mobile devices, with limited
uplink bandwidth (e.g., 24% of them < 2 Mbps [3]). As
compared to distributed ML in datacenter, the cross-device
FL highly relies on WAN whether through 4/5G or WiFi
access, e.g., the inter-city, inter-state, or even inter-country
data transmission. This is because a central aggregation server
iteratively collects model updates from a large number of
geographically-distributed devices and dispatches aggregated
results (a new model) to them. The aggregation typically
repeats for 500–10,000 rounds with model size 10-1000 MB
before model convergence [4]. Such a WAN-driven design,
however, leads to the following inevitable drawbacks.

(i) WAN is known to be highly constrained and unstable [5],
which can severely slow down the convergence of FL training,
e.g., 3,000 rounds and 5 days for an RNN model reported by
Google [2]. In fact, network transmission has become a critical
bottleneck in the FL process [6]. Two key aspects for existing
work to solve the communication challenge are 1) reducing
the total number of communication rounds and 2) reducing
the size of the transmitted messages at each round. For the
former one, [7] focused on accelerating the model convergence
through designing a better federated gradient descent algorithm
than FedAvg [1]. For the latter one, the gradients compression
[8] technique was proposed to save network bandwidth at each
round with tolerable accuracy loss. These work aim to reduce
network transmission through algorithm re-design, lacking a
scalable and communication-efficient FL system design for
large-scale mobile devices. Our goal is to design such an
FL framework by leveraging the hierarchical architecture of
mobile communication network.

(ii) WAN usage incurs a high monetary cost to FL prac-
titioners. Deploying the global aggregator of FL on public
clouds is a common practice. Nowadays, major cloud service
providers like AWS and Azure support charging the network
cost on demand. Since FL requires very little computational
and memory resources (only for weights aggregation), the
network cost often dominates the total monetary cost, e.g.,
more than 80% as we will show in Section V. In reality, the
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(a) Traditional WAN-driven FL (b) Proposed LAN-aware FL
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Fig. 1: A high-level comparison of traditional WAN-driven FL
and our proposed LAN-aware FL.

cost is amplified by the demand to periodically update the
model, e.g., to adapt to the evolving data distribution (input
method) or new advanced model structures. Consequently,
it becomes prohibitively costly for many small entities or
individuals who want to practice on FL. The monetary cost
of deploying a practical cross-device FL, as far as we know,
has not been explored in prior work.

To address these weaknesses, we propose a LAN-aware FL
protocol, namely LanFL, which fully exploits the resource of
local-area network (LAN) to accelerate the FL training and
reduce the monetary cost while preseving the model accuracy.
We illustrate the high-level idea of our proposal in Figure 1.
Within a LAN domain, the devices individually train a local
model and frequently aggregate model updates. Across many
LAN domains, the model updates will also be aggregated
and exchanged through a remote cloud, yet in an infrequent
manner. Through such a LAN-aware design, WAN traffic is
much less demanded, thus the training process is accelerated.
The rationales to introduce LAN-aware design are twofold:
(1) Compared to WAN, LAN bandwidth resource is much
more abundant, e.g., tens of Mbps as we will experimentally
show in Section III-A (a nearly 10× gap). This is because,
during the WAN routing path, any hop can be the bandwidth
bottleneck. For instance, the cloud service gateway can be a
common one as it’s shared by many tenants. In addition, LAN
bandwidth is an unmetered resource that does not add cost to
cloud services. Those advantages of LAN over WAN show the
potential in accelerating FL convergence and reducing billing
costs to deploy FL in the real world; (2) FL applications
are commonly deployed on a large number of devices that
are naturally organized into many LAN domains. For each
LAN domain, such as campus and office building, there is
often a substantial number of devices that are available for
collaborative learning.

However, LanFL still faces the following three technique
challenges: (1) How to coordinate the collaborative training at
the aspects of both devices and LAN domains? For example,
we need to determine the proper frequency for intra-LAN and
inter-LAN aggregation, considering their disparate bandwidth
resources; (2) How to organize the devices into a proper
topology so that the LAN bandwidth can be efficiently utilized?
A typical LAN domain comprises many interconnected access
points (AP), and the devices connected to the same AP share

the AP’s bandwidth capacity. An improper topology may cause
the end-to-end training performance to be bottlenecked by one
AP’s capacity but leaving others underutilized.

To address the above challenges, LanFL incorporates sev-
eral novel techniques. First, LanFL leverages the rich trade-off
between training speed and model accuracy exposed by LAN
domains, by separately tuning the parameters for intra-LAN
and inter-LAN model aggregation. Second, LanFL adopts
two widely-used topologies, i.e., parameter server [9] and
Ring-AllReduce [10] for intra-LAN collaborative training. We
design an adaptive topology construction algorithm, which can
judiciously construct a network topology for parameter aggre-
gation based on the device information profiled at runtime. In
addition to the mentioned techniques, we also implement an
end-to-end prototype of LanFL that is, as far as we know, the
first end-to-end FL platform that can run on commodity mobile
devices with the LAN-aware design. The major contributions
are summarized as follows.
• We propose LanFL, a novel FL paradiam that can utilize

the LAN bandwidth resource and thus relieve its reliance
on constrained WAN, which is orthogonal to existing
approaches designed from an algorithmic perspective.

• We validate our proposed LAN-aware design through the-
oretical analysis, and also evaluate LanFL experimentally
on both simulation and real-world settings involving 30
heterogeneous mobile phones.

II. RELATED WORK

Communication optimization has been extensively explored
to reduce WAN communication in FL. Some of them [6],
[11] focus on reducing the total number of communication
rounds. In practice, they have shown limited flexibility to
adapt to communication-computation trade-offs [12]. Some
other work [13] focus on reducing the transmitted data size
through model compression methods, e.g., sparsification and
quantization. As we experimentally show, these approaches
can hardly speed up model convergence and often lead to
accuracy degradation [14].

Network topology in distributed ML [9], [10], [15] considers
the design of communication topology for computation nodes
to efficiently share and aggregate their parameters. PS [9]
and Ring-AllReduce [15] are the two main topologies in
existing distributed machine learning system for the stable
and efficient system performance. This is why we adopt them
as the topology for our device parameter aggregation in each
LAN. However, their conclusions were limited to high-speed
Ethernet (10 Gbps) environments with no link bandwidth
sharing, which is not realistic in wireless network.

III. PROBLEM DEFINITION AND CHALLENGES

We first follow the WAN-driven FL protocol to formulat
the objective of proposed LAN-aware FL. N denotes the
total number of devices scattered in WAN. The objective of
traditional WAN-driven FL can be formulated as:

min
w

F(w) =
N

∑
i=1

pi · fi(w), (1)
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where fi(w) is the local loss function of device i, F(w) is
the global loss function in the cloud, and pi denotes the
ratio of the device samples to the total samples. Existing
FL protocols, e.g., FedAvg, mostly adopt stochastic gradient
descend to perform the local optimization with E epochs and a
fixed learning rate η . In particular, only n devices are randomly
selected form total N devices at each global training round t.
The cloud then aggregates the updates sent by each device i
across WAN. The updates can be formulated as wi(t + 1)←
w(t) - η∇ fi(w(t)) and then w(t +1)← ∑nwi(t +1).

A. Challenges to deploy LAN-aware FL

Given the inherent advantages of LAN over WAN in de-
centralized training, it’s not easy to efficiently utilize LAN
resources while preserving the original dignity of FL perfor-
mance, e.g., converged model accuracy. The system design
challenges introduced by LAN have not been explored before.
These challenges go beyond the difficulty of designing a three-
layered algorithm [16]–[18].

Local epoch tuning. In traditional WAN-driven FL, it
is very important to tune a proper local epochs due to
the complex trade-off between model accuracy and time. In
comparison, our LAN domain design allows the model to
be aggregated both locally (intra-LAN) and globally (inter-
LANs), which increases the complexity of parameter tuning.
Given the disparate behaviors of WAN and LAN bandwidth
resources, it becomes more difficult to orchestrate them in a
harmonious way. We will illustrate how to solve this challenge
by tuning the key parameters for intra-LAN and inter-LAN
collaborative learning separately in Section IV-B.

LAN bandwidth sharing. Existing FL literature assume
static or pre-assigned WAN bandwidths to each device without
considering the link bandwidth sharing between multiple de-
vices. However, in reality, the intra-LAN network throughput
highly depends on the number of devices that are transmitting
data simultaneously. It opens an extra trade-off between the
parallel training devices and data transmission speed, which is
unexplored yet critical to system performance.

Fig. 2: A case study of P2P
WiFi throughput in a campus
LAN. “PS”: parameter server;
“Ring”: Ring-AllReduce; AP:
access point.

Figure 2 shows a
case study of P2P WiFi
throughput in a campus
LAN. Here, PS/Ring
represent two classical
network topologies
about how devices are
interconnected, where the
former imitates parameter
server [9] (1 server) and
the latter imitates Ring-
AllReduce [10] (more
details in Section IV-C).
“AP” denotes the access
points (routers) that connect

to the devices. We compared the results with four different
settings: Ring + 1 AP, Ring + 4 APs, PS + 1 AP, and PS +
4 APs. For example, Ring + 4 APs setting with 8 devices

means that every 2 devices are connected to one AP while
all 4 APs are within the same LAN. The figure shows
that: (1) Under PS mode, the throughput decreases almost
linearly with an increasing number of devices, as the server
side becomes the bottleneck of the transmission path; (2)
When devices are distributed under many APs’ coverages,
Ring mode significantly increases the throughput as it can
efficiently utilize the available bandwidth of each AP.

The main reason behind above two findings is that the
bandwidth sharing and link congestion of WiFi network be-
come the dominant obstacle to network throughput. Therefore,
building a proper network topology is critical to fully exploit
the LAN bandwidth resources. However, how to obtain the
topology from the enormous searching space with a tolerable
computation complexity is difficult.

IV. DESIGN OF LANFL

In this section, we first illustrate our proposed LanFL’s
overall system overview. We then elaborate the three key
techniques, which are designed to address the three challenges
aforementioned in Section III-A.

A. Overall Workflow

Algorithm 1 shows the workflow of LanFL. Overall,
LanFL also adopts a C/S architecture, where a central server
maintains and keeps advancing a global model w, but the
“client” refers to not only one device but a LAN domain
comprising many devices connected through the P2P mecha-
nism. LanFL follows FedAvg to aggregate the model weights
updated by much local training, but such aggregation happens
on both devices (intra-LAN) and cloud (inter-LAN).

We denote the total number of iterations is T . The LAN
aggregation is executed after every τ1 steps of gradient descent
on device, which also means the on-device training epoch is
τ1. The cloud aggregation is executed after every τ1τ2 steps
of gradient descent on device. It means that LAN aggregates
τ2 times when cloud aggregates one time.

Each device in LanFL serves as two roles: only as a training
device and as both training and aggregating device. As a
training device, it is responsible for updating the local model
(Lines 7,8,9,15,16). As an aggregating device, it frequently
aggregates models received from training devices as the com-
munication topology. According to τ1, it decides whether to
continue the local update or share the result across LAN for
LAN aggregation (Lines 13-14). It also decides when to send
the result to cloud across WAN for cloud aggregation (Lines
18-19) by the τ1τ2.

Cloud is responsible for the following three tasks. First, it
maintains and periodically updates a list of global information.
The global model and LAN domain information for the topol-
ogy are periodically update as the FL training process. Other
parameters, like learning rate η , number of selected LAN m
and devices n are fixed by prior knowledge. Second, the cloud
adopts a random strategy (common practice to overcome the
Non-IID challenge in FL) in selecting LAN domains and train-
ing devices (Lines 3,5). Through our topology algorithm (Line
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Algorithm 1: Our LanFL Algorithm
input : w0, η , τ1: iterations of on-device training at each

LAN aggregation, τ1τ2: iterations of on-device
training at each cloud aggregation, m: number of
selected LAN, n: number of selected devices

1 initialize global model w(t)
2 for t← 0 to T do

// LAN and devices selection on server
3 if t|(τ1τ2) = 0 then
4 randomly select m LANs with network capacity {c j}
5 {n j} ← obtain the number of selected devices in m

heterogeneous LANs, where n j = c j

∑
m
j=1 c j ·n

6 for each selected LAN domain j in parallel do
7 randomly select n j devices, where n = ∑

m
j=1 n j

8 distribute the global model to these devices
// On-device training

9 for each selected device i in parallel do
10 wi(t)← wi(t) - η∇ fi(wi(t))
11 if t|τ1 ̸= 0 then
12 update device model: wi(t +1) = wi(t)

// LAN-aware aggregation
13 if t|τ1 = 0 then
14 for each selected LAN domain j in parallel do
15 obtain the topology G j
16 share models between devices as G j across LAN
17 LAN aggregation: w j(t) = ∑

n j

i=1 p j
i w j

i (t)
18 if t|τ1τ2 ̸= 0 then
19 update device model: wi(t +1) = w j(t)
20 if t|τ1τ2 = 0 then
21 share models from devices to cloud across WAN
22 cloud aggregation: w(t) = ∑

m
j=1 p jw j(t)

23 update global model: w(t +1) = w(t)
output: the final global model w(T )

12), it constructs a proper network topology for parameter
aggregation in each LAN domain. Third, the cloud iteratively
updates the global model by aggregating the received models
using FedAvg algorithm (Line 20). Noting that LanFL only
needs one aggregating device in each LAN domain to transmit
its aggregated model to the cloud (Line 20), which can save a
lot of WAN traffic in LanFL as confirmed by the experimental
results in Table III.

B. LAN Domain Design

Many prior studies have shown the importance of properly
tuning the hyperparameters of FedAvg due to the Non-IID
settings in FL. In particular, the local epoch number E exposes
a rich trade-off between training time and model accuracy. On
the one hand, a larger E allows for more local computation
on devices and potentially reduces cloud round across WAN,
which can greatly accelerate the overall convergence process.
On the other hand, with Non-IID datasets distributed cross
devices, a larger E may lead each device towards the optima
of its local objective as opposed to the global objective, which
potentially hurts convergence accuracy. What’s more, the slow
WAN will exacerbate the contradiction in terms of the clock
time.

LANWAN

Bandwidth (Mbps)

Optimal local epoch

Low, 1 – 20

Large, 1 – 50

Medium, 20 – 100

Medium, around 1

Datacenter

High, up to 1000

Small, typically 1 batch

Fig. 3: A comparison of WAN, LAN, and datacenter in
consideration of their bandwidth capacity and optimal local
epoch in distributed learning.

To some extent, LanFL’s LAN domain is similar to a
distributed system in datacenter, where many machines are
interconnected through switches. As summarized in Figure 3,
regarding the network bandwidth capacity, however, LAN is
somewhere between the WAN and datacenter. It indicates a
new spectrum of parameter tuning different from WAN-driven
FL (typically very large E) and datacenter (typically as small
as one batch per aggregation).
LanFL introduces a LAN domain module, within which

the models are aggregated more frequently: with fewer local
epochs τ1 (also denoted as E) but more LAN aggregations
τ2. The module is used to aggregate those device models
in each LAN domain with τ2 LAN aggregations. In each
LAN aggregation, those selected training devices update the
local model with τ1 epochs in parallel. We explain in two
aspects why this design can speed up FL while ensuring
accuracy. First, a smaller τ1 can ensure the accuracy for the
Non-IID datasets on devices in each LAN domain. It doesn’t
increase the communication cost in LAN too much because the
communication speed in LAN is much faster than that in WAN.
Second, a larger τ2 can reduce the number of aggregations
in the cloud across WAN. It doesn’t significantly reduce the
global model accuracy because the cloud aggregates the entire
LAN domain model, not the more biased device model with
more Non-IID datasets.

C. Adaptive Topology Construction

As discussed in Section III-A, the network topology about
how devices within a LAN domain are organized has substan-
tial impacts on the network throughput. For instance, when
there are only a few APs, such as in a family LAN, the
PS mode can achieve higher P2P communication throughput.
When there are more APs and devices, such as in a campus
LAN, the Ring mode allows for higher throughput. We give a
high level comparison between PS and Ring mode in Figure 4.
In this section, we first present an analytical model, and then
further propose our topology algorithm to minimize the overall
parameter transmission time with a proper network topology.

1) Analytical Model: Devices in a LAN are connected
by some distributed routers, which can be represented as a
directed graph. We denote the graph as G1 = (N∪R, E1),
where N denotes the set of mobile devices, R denotes the set
of routers, and E1 denotes the set of communication links.
Let d(v) denote the degree of each node v (v ∈ N∪R). Each
device i ∈ N can only access the network through a specific
router j ∈ R. The corresponding link is denoted as (i, j),
whose bandwidth is denoted as b(i, j). The wireless bandwidth
capacity of each router j is denoted as b( j). Let N j denote
the set of devices directly connected to router j. Devices
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(a) Parameter Server mode (b) Ring-AllReduce mode

Mobile device WiFi router Wired (wireless) transmission

Weights
aggregation

Training Weights aggregation & training

Fig. 4: A comparison of two network topologies of how
devices within a LAN domain are organized: Parameter Server
(PS) mode and Ring-AllReduce (Ring) mode.

connecting to the same router share the bandwidth of the
router. Thus, the available bandwidth of link (i, j) is calculated:

b(i, j) =
b( j)

∑
i∗∈N j

ϕi(d(i∗))
, (2)

where i∗ ∈ N j represents all devices (including device i)
connected to routers j, and ϕi(·) represents the bandwidth
allocation strategy for device i ∈ N j.

Let G2 = (N, E2) denote the direct communication among
devices, where E2 denotes the direct communication path
between two devices. In a LAN, routers are connected directly
through a switch, which has a much higher bandwidth capacity
than wireless links. Every two devices can be connected
through one (when they connect to an identical router) or two
routers (when they connect to different routers). We denote the
communication path between device i and i′ as (i, i′), where
path (i, i′) ∈ E2. The path’s bandwidth is given as:

b(i, i′) =
{

min{b(i, j),b( j, i′)} i, i′ ∈ N j

min{b(i, j),b( j, j′),b( j′, i′)} i ∈ N j, i′ ∈ N j′ .
(3)

Based on Eq. 2 and Eq. 3, we seek to optimize the overall
parameter transmission time among all the devices.

However, it is difficult to solve the above problem. First,
the parameter transmission time is closely related to network
topology and the roles that devices play in different network
topologies. Second, due to the bandwidth sharing property
of wireless links within an identical router, the allocated
bandwidth to each link is affected by the network topology.
Third, directly determining the optimal network topology and
the roles of different devices can cause high computation
complexity due to the enormous searching space. In this
work, we explore PS and Ring-AllReduce modes to design
the network topology, due to the extremely huge search space
theoretically. We explain the rationales for two reasons. First,
they are two most popular and well established designs in
datacenter-level distributed ML. Extensive work [9], [10],
[15], [19] are built atop them and achieve the state-of-the-
art performance. Second, a few work have proven that these
two topologies lead to the minimal network traffic [10], [15] in
datacenter network. While a more suitable network topology
might exist for LAN, it is not the primary concern of this work
and we leave it as future work.

We notice a few advanced network topology designs other

than PS and Ring-AllReduce, for example [20], which de-
signed an optimal communication topology that minimize the
parameter transmission time in cross-silo FL. However, they
do not fit into LAN scenario for the following reasons: 1) It
mainly focus on the cross-silo FL with the assumption of high-
speed connections and neglecting access linked delays, which
is unacceptable in cross-device scenario with WiFi or 4G/5G
access network. The bandwidth sharing challenge, as shown
in Figure 2 and Eq. 2, makes our problem unique to [20].
2) The determined participants and stable links makes the
topology construction time of the NP-hard problem negligible,
which is unacceptable in cross-device scenario with random
participants and dynamic wireless network. For the cross-
silo scenario, the optimal topology was generated to serve
the entire training process at the beginning. However, for our
LAN domain aggregation in WiFi access network, the optimal
topology is dynamically generated for the current round based
on the selected devices and accessed routers.

Therefore, to deal with the above challenges, we first
analyze the property of two classical network topologies in
distributed machine learning, and then further determine the
roles of devices. To be noted, building atop PS and Ring-
AllReduce does not mean our system only has two concrete
topology candidates. For example, with PS topology, each
client can be treated as the server so the number of topology
candidates equals to the total number of clients.

2) Our proposed algorithm: PS and Ring are two widely
used topologies in distributed machine learning for their simple
and effective designes. We consider these two topologies
when optimizing the overall parameter transmission time. The
transmission time is bottle-necked by the link with minimum
bandwidth in both PS and Ring topology [10], [21]. Let G
denote the graph set of the two topologies, where G ⊂ G2.
The minimum bandwidth b of all links in one topology G ∈
G, i.e.,

b = min
(i,i′)∈G

{bi,i′}. (4)

In PS mode, for a topology G, one device in G acts as
a server that receives and aggregates parameters from other
devices. We first get the minimum bandwidth b1 in all links
as Eq. 4. Then, we calculate the transmission time t:

t = 2 · s
b1

, (5)

where s denotes the transmitted data size of the global model.
We first select one device from the k selected devices (where
n denotes total selected devices in WAN) as the server in this
LAN, resulting in k possible different choices. We then traverse
all k−1 edges in PS topology to get the one with minimum
link bandwidth based on Eq. 4. So the problem complexity
is O(k2). In Ring mode, for a topology G, all devices in G
are arranged in a logical ring, and each device only sends a
parameter to its right neighbor and receives a parameter from
its left neighbor. Meanwhile, each device immediately aggre-
gates the new parameters until all parameters are aggregated.
We can get the minimum bandwidth b2 of all links as Eq. 4.
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Dataset Model Model
size

Client
number

FEMNIST CNN (2 CONV, 2 FC, 28×28) 25MB 3550
CelebA CNN (4 CONV, 2 FC, 84×84) 36MB 9434

TABLE I: Datasets and models used in experiments.

Device Qualcomm Training Time (ms)
FEMNIST CelebA

Google Pixel 4 SM8150 179 561
Redmi Note 7 pro SDM675 588 1355
Nexus 6 APQ8084 1642 5392

TABLE II: Training time of different devices with MNN [24]
.

We calculate the transmission time t for Ring mode:

t =
4(k−1)

k
· s

b2
. (6)

Considering the connection characteristics of the device and
router, the number of each device’s degrees in the Ring mode
is 2 with one out-degree and one in-degree. So the minimum
bandwidth for any Ring topology remains the same. We first
select a Ring topology at random and then iterate its k edges
to get the one with minimum link bandwidth. So the problem
complexity is O(k).

Among the above two modes, we choose the topology
with less time as the problem’s optimal solution. The overall
complexity of the problem is O(k2).

V. PERFORMANCE EVALUATION

This section uses experiments to evaluate the guarantees
of our proposed approach. We use two popular FL datasets
and CNN models in the experiment. We also implement a
LAN-aware FL framework to show the superior performance
of LanFL, compared to three baselines.

A. Experiment Setup

Datasets and models used in our experiments are summa-
rized in Table I. We test LanFL on 2 datasets: FEMNIST,
CelebA. We split each dataset into Non-IID settings and assign
them to many devices.

We implement LanFL atop FLASH [14], a framework that
can simulate the real-world FL process by considering device
and user behavior heterogeneity.

We use three baselines in experiments to demonstrate
LanFL’s benefits are: WAN-driven FedAvg [1] algorithm
denoted as WAN-FL, and two typical gradients compression
algorithms, i.e., Structured Update [22] denoted as WAN-
FL-Struct and SignSGD [23] denoted as WAN-FL-Sign, re-
spectively. Those two algorithms are expected to reduce the
communication overhead in FL.

We use four metrics to evaluate LanFL and baselines:
• Convergence Accuracy. We test the final global model

on the combined testing set from all devices.
• Clock time. We define the clock time as the total time

spent during FL till convergence, including device train-
ing time (train TC) and communication time across WAN
(com TW ) and LAN (com TL).
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Fig. 5: The testing accuracy of LanFL and baselines across
training rounds and clock time on two datasets

• WAN traffic. We quantify the WAN tra f f ic in terms of
total traffic from cloud to devices during the FL process
till model convergence.

• Monetary cost. We measures the Cost on the billing
model of AWS EC2. We use a 1.2xlarge instance with
8×vCPU and 16GB memory, which is enough for model
aggregation and costs $0.204/hour. The uplink traffic is
free and the downlink cost is $0.09/GB. The cost is
calculated as:

Cost = 0.204 · clock time+0.09 ·WAN tra f f ic. (7)

B. End-to-end Results

We first show LanFL’s overall results compared to baselines
in Table III and Figure 5. For each device round, LanFL
selects 5 LAN domains (m) with each domain involving 10
training devices (k). We set the WAN and LAN bandwidth as
2Mbps and 20Mbps, respectively.

Figure 5 shows that LanFL can significantly accelerate
model convergence while preserving model accuracy. On
FEMNIST, LanFL’s accuracy is 1.03% higher than WAN-FL,
and it costs only 16% of clock time (i.e., 6.25× speedup). On
CelebA, LanFL’s convergence accuracy is only 0.1% higher
than WAN-FL, but it costs 68% of clock time (i.e., 67 hours
reduction). The other two baselines reduce the convergence
time but are not as significant as LanFL, and cause non-trivial
accuracy drop, e.g., 2.84% for WAN-FL-Struct on CelebA.

The experimental results of Table III show that LanFL
can significantly reduce WAN traffic and monetary cost. The
number of cloud round required by LanFL to converge is
much fewer than WAN-FL (87% on FEMNIST, 47% on
CelebA) as shown in Figure 5, which brings in tremendous
WAN traffic savings. Table III also shows that the WAN traffic
and monetary cost of LanFL are much less than WAN-FL:
On FEMNIST, LanFL reduces 99 % WAN traffic and 97%
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Dataset FL Protocols Accuracy (%) Round Number WAN Traffic (GB) Clock Time (hour) Monetary Cost ($)
WAN-FL 81.82 1820 2221 170 234.57
WAN-FL-Sign 80.15 (1.67↓) 1360 (75%) 74 (3%) 90 (53%) 25.02 (11%)
WAN-FL-Struct 81.54 (0.28↓) 1820 (100%) 213 (10%) 124 (73%) 44.47 (19%)FEMNIST

LanFL 82.85 (1.03↑) 240 (13%) 29 (1%) 28 (16%) 8.32 (3%)
WAN-FL 91.56 800 1406 208 169.24
WAN-FL-Sign 89.56 (2.00↓) 800 (100%) 44 (3%) 177 (85%) 40.16 (24%)
WAN-FL-Struct 88.72 (2.84↓) 800 (100%) 250 (18%) 182 (88%) 59.63 (35%)CelebA

LanFL 91.66 (0.10↑) 420 (53%) 73 (5%) 141 (68%) 35.33 (21%)

TABLE III: Summarized performance of LanFL compared to 3 baselines.
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Fig. 6: The training performance of LanFL and FedAvg with
different PS and Ring mode.

monetary cost to the WAN-FL; On CelebA, LanFL reduces
95% WAN traffic and 79% monetary cost to the WAN-FL.
The saved cost comes from both the reduced clock time to rent
hardware resources and the reduced network traffic according
to Eq. 7. For comparison, the improvements of the other two
gradients compression algorithms are much less effective.

C. Analysis of LAN topology

We further evaluate LanFL’s design in determining intra-
LAN device topology (Section IV-C) by testing LanFL with
both PS and Ring modes. We set the configurations of LanFL
as in Figure 6 according to our measured results shown in
Figure 2. We choose the four measured average throughputs
of 8 devices in Figure 2 as the B∗ of LanFL. We denote the
four cases in Figure 2 as PS-1, PS-4, Ring-1, and Ring-4, and
their throughputs are 22Mbps, 16Mbps, 20Mbps, and 62Mbps,
respectively. Other settings are consistent with Figure 5.

The results are illustrated in Figure 6, from which we make
the following key observations. First, LanFL outperforms the
WAN-FL with either PS or Ring mode, e.g., 22.0×–23.4× and
2.3×–2.4× faster respectively at accuracy 80% on FEMNIST
and 90% on CelebA. Second, LanFL adopts PS mode which
outperforms Ring mode when the AP number is small. For
example, on FEMNIST and 1 AP, LanFL takes 1.2× longer
time till model convergence. When the AP number is larger,
however, LanFL favors Ring mode, e.g., 1.1× faster than PS
mode with 4 APs on FEMNIST. It shows that LanFL can
judiciously pick the optimal network topology.

VI. REAL-WORLD EXPERIMENTS

A. Experiment Setup

We are not aware of any FL frameworks for real-world,
cross-device deployment. Therefore, we have implemented an
end-to-end cross-device FL system atop MNN [24], a mobile-
oriented ML engine with both on-device training/inference

30 heterogeneous
smartphones

5 geo-distributed LAN domains

Fig. 7: The snapshots of our real-world experimental settings.

support. The system includes all modules of standard FL
process, e.g., on-device learning and on-server aggregation,
as well as the unique modules of LanFL, e.g., cross-device
recognization and communication, on-device aggregation, net-
work topology construction, etc. The communication module
is implemented based on the WebSocket protocol, which
can provide full-duplex communication channels. In total, the
system comprises ∼3,500 lines of code.

We use a 1.2xlarge instance3 on AWS EC2 with 8×vCPU
and 16GB memory as the remote server. The experiments
are performed on 30 mobile phones with 12 different device
models, including HUAWEI Mate 30, Redmi Note 9, Mi 11
Pro, Samsung Galaxy S21, etc. The 30 devices are separated
into 5 campus LANs, within each LAN the 6 devices are
connected through a wireless router.

B. Experiment Result

In this section, we study the performance of LanFL
compared to FedAvg in our implemented practical end-to-
end cross-device FL system. We also evaluate the on-device
overhead of LanFL’s LAN aggregation, which demonstrates
that our on-device aggregation design doesn’t add much extra
burden to the mobile device. The 30 mobile phones are
scattered in 5 different campus networks served as 5 LAN
domains (m=5). Each campus is allocated by 6 mobile phones
of different types. The 6 phones are either connected to
dedicated high-speed routers (dedicated) in Figure 7 or to the
campus public routers (public). We set a different numbers
of classes each client may have, i.e., 2 for Non-IID-2 and 6
for Non-IID-6, with 10 classes globally. In each cloud round
(when T |τ1τ2 = 0), we randomly select 10 mobile phones to
participate in FL training (n=10). We use the WAN-FL in
Section V as our baseline.

The end-to-end experimental results are illustrated in Fig-
ure 8, from which we make the following key observations.
First, LanFL outperforms the WAN-FL in both Non-IID-2
and Non-IID-6 FL settings, e.g., 14% higher for accuracy and
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Fig. 8: The training performance of LanFL and WAN-FL with
different Non-IID FL settings.

1.4× faster for clock time, respectively. On the Non-IID-2
setting, the serious class imbalance across datasets on devices
results in low accuracy of FL training. However, the results
in Figure 8 can also prove that our LanFL can improve the
accuracy, especially in a more serious class imbalance Non-IID
setting. On the Non-IID-6 setting, the accuracy of LanFL is
only 0.7% higher than WAN-FL, but it takes 71% of clock
time (i.e., reducing 1009 seconds). Such an observation is
consistent with the simulation results in Section V-B. Second,
the convergence accuracy of LanFL dedicated and LanFL
public is basically the same, but the former converges faster
than the latter in both FL settings. LanFL with public routers
takes 2200 seconds and 650 seconds longer than LanFL with
dedicated routers on Non-IID-2 and Non-IID-6, respectively.
Noting that, many other devices are also connected to the
campus public routers, which leads to the bandwidth of our
FL training devices becoming smaller.

VII. CONCLUSIONS

Traditional FL protocols heavily rely on WAN that often
slows down the learning process and adds billing costs to
developers. To address those raised limitations, this work
proposes a LAN-aware FL paradigm. The main idea is to
exploit the abundant and unmetered bandwidth of LAN, which
leverages both LAN for frequent local aggregation and WAN
for infrequent global aggregation. It also incorporates several
critical techniques to tackle the unique challenges introduced
by the LAN-aware design. The experimental results show that
it can significantly save the consumed WAN bandwidth and
reduce the monetary cost while preserving the model accuracy.
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