
BreathPass: Ultrasounic Authentication by Chest
and Abdomen Movement while Breathing

Lingkun Li, Fan Dang†, Duo Liu, Zhichao Cao‡
Beijing Jiaotong University, †Tsinghua University, ‡Michigan State University

Abstract—In this study, we propose BreathPass, a non-invasive
authentication system that characterizes the chest/abdomen
movement incurred by human breath to enable unlocking smart
devices while wearing various types of face covers, clothing,
in different postures, and dynamic status such as walking or
running. To capture the breathing pattern, BreathPass uses
speakers to emit ultrasound signals. The signals are reflected off
the chest wall and abdomen and then back to the microphone,
which records the reflected signals. The system then extracts
the breathing pattern from the reflected signals, and further
extracts fingerprints from the breathing pattern, and use these
fingerprints to perform authentication. We carefully design a
Deep Neural Network model and explore its capacity for feature
abstraction in order to address the challenges associated with tiny
position changes resulting in different breathing patterns and
the extremely narrow bandwidth of breathing. We implement
a prototype and conduct extensive experiments. BreathPass
achieves an overall accuracy of 83%, a true positive rate of
73%, and a false positive rate of 5%, according to performance
evaluation results.

I. INTRODUCTION

With the advancement of modern smart devices, unlocking
methods have shifted away from the “what you know” schema
and toward the “who you are” schema. With the “what you
know” method, a user needs to pre-configure some information
such as PINs and secret questions, and the device will then
challenge the user to verify that she or he actually owns
the device. Such a PIN is often complex to ensure security
and makes it difficult for individuals to remember to some
level. In addition, these passcodes or answers are vulnerable
facing blindly replay-attack since the devices do not care
who is entering the information. With “who you are” tactics,
the user no longer needs to type in the complex PIN, thus
simplifying and speeding up unlocking. These approaches
are quite popular with users because of their non-invasive
nature and ease of use; e.g., Apple employs Face-ID to unlock
the iPhone and iPad via facial recognition [1]. Apart from
facial recognition, fingerprint identification is a frequently used
method for unlocking smart gadgets [2]. In addition, voiceprint
recognition [3], iris recognition [4], heartbeat recognition [5],
breathing voice recognition [6], gaze gesture [7], and tooth-
edge recognition [8] also plays a key role in biometric recog-
nition approaches.

These approaches, however, have drawbacks in two different
aspects.
Vulnerable to Replay-attack: Some of them are still compro-
mised by replay-attacks, e.g., many research efforts [9], [10],
[11], [12], [13] focus on resolving the replay-attack among
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Fig. 1. Comparasion of existing biometric authentication methods.

voiceprint-based, fingerprint-based, gaze-based, or face-based
authentication. For example, we could spoof others’ face and
voice with masks and recording.
Lack of Mobility and Flexibility: Other approaches using
iris, tooth-edge, heartbeat, and human breath are not suffi-
ciently flexible on mobile devices, e.g., iris-based authentica-
tion requires the device to equip specific designed components
such as inferred cameras, meanwhile, it needs users to look at
a specific area to make sure that the inferred camera could
capture a clear iris. Heartbeat-based authentication such as
Cardiac Scan [5] requires the deployment of two radar sensors,
which are not standard hardware and so have a high operating
cost. BreathPrint [6] is a novel approach that doesn’t need
to equip specific designed components and can significantly
defend against replay attacks, however, it cannot work in some
scenarios including some people choose to wear a mask as the
breathing voice that is needed by the system could be blocked
by the face cover. The face cover also makes Smileauth [8]
infeasible since it requires an image of the tooth-edge which
is blocked by the face mask.

In this paper, we propose BreathPass, a new non-invasive
breath-based “who you are” authentication technique. Breath-
Pass detects users’ breath in a non-invasive manner, extracts
features from their breath, and then verifies that the user
is permitted. As shown in Figure 1, BreathPass is a novel
approach that is hard to be compromised by replay attacks
because breath pattern is hard to be spoofed and imitated.
In addition, BreathPass is flexible enough since it only uses
commercial off-the-shelf (COTS) components equipped on
almost every devices, and can be used in a wider scenarios
such as wearing different kinds of face covers and clothes,
in different postures, and in different dynamic status such as
walking or running. BreathPass faces the following challenges
in order to implement it and achieve all of the aforementioned
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requirements:
1) As with BreathPrint, face covers may obstruct the voice

of the user’s breath. To overcome this challenge, BreathPass
should avoid using a microphone to record users’ breathing
voices; instead, we employ an ultrasound-based chest wall
and abdomen motion-sensing technology to characterize users’
breathing patterns. Specifically, BreathPass works by initially
emitting ultrasonic waves through the speaker of a smart
device, such as a smartphone. The ultrasonic waves then travel
to the user’s chest wall and abdomen, where they are reflected
back to the smart device’s microphone. The motion of the
chest wall and abdomen, which characterizes human breath,
alters the phase of the reflected signal, and such phase shifts
are used to authenticate;

2) Unlike the speaker verification [14], [15] which normally
converts the speech signal to a spectrogram in order to extract
features, the motion of the chest wall and abdomen typically
has an extremely low frequency of less than 1 Hz. As a result,
features derived from spectrograms such as Mel Frequency
Cepstral Coefficients (MFCC) or Gammatone Frequency Cep-
stral Coefficients (GFCC) [16] cannot be used to identify
the breath. To address this issue, we implement the authen-
tication mechanism using a one-dimensional Convolutional
and Siamese Neural Network. Specifically, the neural network
takes two raw chest wall and abdominal motion waveforms
as the input. One of these two inputs is the template input
collected from the enrollment stage, while the other is the
matching input collected from the authentication stage. During
training the neural network, it learns the breathing pattern
and generates a vector of features, saying fingerprint, which
can be used to calculate the distance between two inputs.
Finally, BreathPass uses the distance between the two inputs
to determine if they originate from the same person or not;

3) Unlike mechanical vibration, which typically has a stable
frequency [17], breathing patterns between individuals do
not share the same prior knowledge as mechanical vibration.
Additionally, even when people are in the same posture, their
breathing patterns may vary. In other words, small movements
result in different breathing patterns. As a result, denoising the
motion of the chest wall and abdomen requires developing a
model that can suppress the moving-dependent noise while
retaining the user-dependent difference. To address this issue,
we introduce a technique called average fingerprinting. With
such a technique, the template input is composed of multiple
chest wall and abdomen motion signals that might come
from different tiny postures. BreathPass generates multiple
fingerprints from template signals using a neural network.
Following that, the system computes the average of those
fingerprints and then uses that average fingerprint to determine
the distance to the fingerprint obtained during the authentica-
tion stage. Finally, it calculates the authentication result using
that distance.

Our contributions are listed as follows:
• We design a novel mechanism for sensing human breath-

ing patterns and build a DNN to determine whether the
breathing pattern provided by the user is authorized.

• By using the breath sensing mechanism and the DNN we
built, we create BreathPass, which enables smart devices
to perform authentication via the human breath. We
also implement a proof-of-concept software to evaluate
BreathPass’s performance.

• On the basis of our implementation, we conduct extensive
experiments. BreathPass achieves an 83% accuracy, a
73% true-positive rate (TPR), and a 5% false-positive rate
(FPR) in general, according to the experiment results. The
BreathPass system is stable when the user is wearing a
variety of different face covers, clothing, and postures.
We believe that in the future, it may be a candidate for a
“who you are” unlocking mechanism, or it may serve as
a complement to other untrustworthy mechanisms, such
as eye recognition, in order to provide authentication
services jointly.

II. DESIGN

A. Ultrasound-based Breath Sampler

We use the speakers on smart devices, such as a smartphone,
to play a stereo ultrasound signal. The speaker is perpendicular
to and close to the chest wall. The left channel plays an
ultrasound signal at an 18 kHz frequency, while the right
channel plays one at a 22 kHz frequency. The ultrasound
signals are reflected off the chest wall and abdomen and are
picked up by the smartphone’s microphone, which is also
positioned near the chest wall. Formally, the signal emitted
is denoted as follows:

s(t) = cos(2πf1t) + cos(2πf2t), (1)

where f1 = 18, 000 and f2 = 22, 000. After the microphone
records the reflected signal m(t), the breath sampler first
employs a high pass filter to eliminate components below 16
kHz. Then, inspired by the previous efforts [18], [19], the
breathing pattern can be regarded as the signal x(t) modulated
into m(t) by the carrier of s(t). Therefore, we have

m(t) = x(t)s(t). (2)

To demodulate the breathing pattern x(t), we need to multiply
m(t) by s(t) and let the result pass through a low pass filter
with an extremely low cutoff frequency, e.g., 200 Hz. From
Equation (1) and (2), we have

m(t)s(t) = x(t)s2(t) = x(t)[cos(2πf1t) + cos(2πf2t)]
2

= x(t)[cos2(2πf1t) + 2 cos(2πf1t) cos(2πf2t)

+ cos2(2πf2t)]

= x(t){1
2
[1 + cos(2π2f1t)] + cos(2π(f1 + f2)t)

+ cos(2π(f2 − f1)t) +
1

2
[1 + cos(2π2f2t)]}.

(3)

After a low pass filter with a 200 Hz cutoff frequency, the
components cos(2π2f1t), cos(2π2f2t), cos(2π(f1+f2)t), and
cos(2π(f1 − f2)t) all disappear. Therefore, we have

m(t)s(t) =⇒ x(t)(
1

2
+

1

2
) = x(t). (4)
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Fig. 2. (a) Spectrogram of a speech “OK, Google!”. (b) Spectrogram of a breathing sound. (c) FFT and CDF of a breathing pattern. (d) Spectrogram of a
breathing pattern

We use the extracted x(t) as the breathing pattern to perform
authentication.

B. Fingerprint Extractor Design

Design Issues: After sampling the breathing pattern, both
the enrollment stage and the authentication stage all send
their samples to the fingerprint extractor. In order to get a
feasible fingerprint that can be used to perform authentication,
the design of fingerprint extractor should take the following
challenges into consideration:

1) Denoise. Previous works [17], [19], [20] proposed mul-
tiple approaches to denoise the vibration waveform or the
breathing waveform for machine damage or human disease
detection. For example, mmVib [17] reports the machine error
when an abnormal vibration is detected. The system collects
the vibration waveform with noises and leverages a model to
denoise the signal. After that, the system will measure the
distance between the sampled signal and the normal status
signal. If the distance is within a threshold, then the system
classifies the machine works normally. Otherwise, the system
reports the machine in an abnormal status. To build such a
denoise model, the system usually collects vibration waveform
with noises when the machine works normally and use a series
of transformation and processes, e.g., matching arc on the I-
Q plane [17], to match the noise waveform with the standard
vibration waveform as precise as possible. After matching, it
fixes the processes and parameters to denoise future signals. If
the machine works in abnormal status, the signal after being
processed by the same model with the same parameters is
far from the standard one. Such an idea was also adopted by
SpiroSonic [19] and BreathListener [20] to detect if human
breathes normally. The common point of these works is to
find the identical pattern when the machine or the lung works
normally. In BreathPass, however, the goal is to characterize
the difference in the breathing pattern among different people
instead of finding the typical pattern from different peoples’
breaths. Therefore, it is hard for us to build a denoise model
by extracting the common pattern.

2) Stability. The chest wall and the abdomen motion are not
as stable as a machine. A different breathing pattern may be
extracted even the user stays in the same posture, but after
a tiny movement; e.g., when a user leans back on a chair
from the straight waist, a different breathing pattern will be
extracted. Therefore, the design of the fingerprint extractor
must take such a stability issue into consideration.

3) Feature selection. The most similar task to BreathPass
is speaker verification. The speaker verification task first uses
a microphone to record the user who is saying a predefined
sentence or any other sentence. The system then verifies if
the recorded voice comes from the authorized users. Existing
speaker verification solutions typically first transform the voice
signal into the spectrogram, then extract spectrogram-based
features such as Mel Frequency Cepstral Coefficients (MFCC)
or Gammatone Frequency Cepstral Coefficients (GFCC) [16].
After that, such solutions leverages the Gaussian Mixture
Model (GMM) or build a Deep Neural Network (DNN)-based
model to verify the speaker.

BreathPrint [6] adopts a similar idea. Different from the
speaker verification task is that it uses a microphone to record
the user’s breathing voice, then extracts GFCC features and
leverages the GMM model to verify if the breathing voice
comes from the authorized user.

To extract spectrogram-based features, the system needs to
get a signal with a reasonable wide bandwidth; e.g., speaker
verification and BreathPrint [6] are both capable of leveraging
spectrogram-based features since the spectrogram of a speech
“OK, Google!” could reach up to 6 kHz as shown in Fig-
ure 2(a), and the spectrogram of a breath sound can reach
up to 10 kHz as shown in Figure 2(b). Therefore, there is a
sufficient area to embed information in the spectrogram so that
these systems are able to use photo verification-liked models
to perform authentication.

In BreathPass, however, we cannot use spectrogram-based
features since the bandwidth of a breathing pattern is ex-
tremely narrow. An adult typically finishes a breathing cycle
in 2 to 3 seconds. We plot the result of the Fast Fourier
Transform (FFT) of a breathing pattern that we sampled with
the method described in Section II-A as shown in Figure 2(c).
We can find that the majority of the power is under 1 Hz (90%
of power is below 0.89 Hz). Therefore, the bandwidth of a
breathing pattern in the spectrogram is too narrow as shown
in Figure 2(d) to provide sufficient information that can be
used to perform authentication.
Our Solution: To address the first challenge that we cannot
build a denoise model based on observation, instead, we build
a DNN-based model to learn how to denoise the signal and
extract the fingerprint itself. To cope with the third challenge,
we use the raw breathing pattern waveform as the input instead
of extracting spectrogram-based features.

As shown in Figure 3, the fingerprint extractor is consists
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of a series of convolutional layers followed by some fully
connected layers. Each layer uses the ReLU function to
activate, and there is a max-pooling layer with a length of
4 after the first and the last convolutional layers. Each fully
connected layer except the last one adopts dropout with the
parameter 0.2 to avoid overfitting. We also adopt the idea of
ResNet [21] of adding a skip link between convolutional layers
to avoid gradient vanishing. The fingerprint extractor takes a
breathing pattern waveform sampled by the method described
in Section II-A as the input. After the last fully connected
layer of the extractor, it outputs a vector of 512 floating-point
numbers as the fingerprint.

The second challenge about stability requires us to remove
moving-dependent noises while reserving the user-dependent
difference among different users’ breathing patterns. To cope
with this issue, we introduce the average fingerprint technique.
Specifically, instead of using the fingerprint that comes from
a single breathing pattern waveform as the result of the
enrollment stage, we sample multiple breathing patterns in the
enrollment stage and get multiple fingerprints correspondingly.
We calculate the average of these fingerprints as the result of
the enrollment stage.

The idea behind the average fingerprint is that if we focus on
the same user, moving-dependent noises are unstable while the
user-dependent difference is stable, therefore, if we take the
average of multiple fingerprints, unstable moving-dependent
noises will be smoothed while the stable user-dependent dif-
ference is reserved. We show the effectiveness of the average
fingerprint in Section IV-I.

C. Comparator Design

After getting fingerprints from both the enrollment stage
and the authentication stage, we need to build a comparator
to measure the distance between two fingerprints.

After getting the fingerprints, we build the comparator by
applying logistic regression. Specifically, we have the target
function

f(x, y) = σ(wT ∥x− y∥2 + b), (5)

where σ(·) is the sigmoid function, w is the vector of param-
eters of the comparator, b is the bias, and x and y are the
fingerprints from the enrollment stage and the authentication
stage, respectively. During training the comparator, the target
output f(x, y) is set to 1 if the x and y are from the same
user, otherwise, the target output is set to 0.

D. Combine the Fingerprint Extractor with the Comparator

As shown in Figure 4, we put these components together.
The fingerprint extractor and comparator are combined into

Pass? (0/1)

Comparator

Fingerprint extractor

Average

Breathing Pattern 1
Breathing Pattern

n

Fig. 4. The end-to-end system design combining the fingerprint extractor
with the comparator

a single neural network. During the training process, we
randomly choose n breathing patterns from the same volunteer
in the training dataset and choose another breathing pattern
from a random volunteer in the training dataset. If these two
volunteers are the same one, then the final result, i.e., Pass?,
is set to 1; otherwise, it is set to 0.

As for the deployment of these components, the left lower
side of the figure, i.e., n breathing patterns, comes from
the enrollment stage, and we store the average fingerprint in
advance after the enrollment stage. During the authentication
stage, the system samples a breathing pattern as shown on the
right lower side of the Figure 4. If the output of the comparator
is greater than 0.5, we denote the final result, i.e., Pass?,
as 1, indicating that authentication was successful; otherwise,
we denote the final result as 0, indicating that authentication
failed. If authentication fails, BreathPass prompts the user to
sample his breathing pattern and attempt authentication again;
if authentication continues to fail, BreathPass will prevent the
user from sampling his breathing pattern until the user enters
the correct PIN number.

III. IMPLEMENTATION

A. Breathing Pattern Sampler and Data Collection

We develop the breathing pattern sampler on Android
smartphones. We use the native Android library AAudio [22]
to generate, emit, and record the ultrasound waves. We use our
sampler to collect data and extract the breathing patterns of
20 volunteers. Each volunteer is continuously sampled for 60
seconds and five times (i.e., 300s in total). The 20 volunteers
cover people of different gender and age that may frequently
use smart devices. We use a Google Pixel 3a smartphone
running Android 11 to perform sampling. The sampling rate
is set as 48 kHz. During sampling, we place the smartphone
on a desk and let the speaker towards a volunteer’s chest.
The distance between the smartphone and the volunteer is
between 5 and 10 cm. An interval separates two consecutive
samplings to allow the volunteer to adjust their tiny posture.
Once the microphone samples the reflected ultrasound signals,
we leverage Apache Commons Math package [23] to build
a high pass filter that eliminates all components below 16
kHz, leaving only the ultrasound signals and then extracts the
breathing pattern using the design described in Section II-A.
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B. Training the Feature Extractor and Comparator

After getting the dataset from 20 volunteers, we build the
feature extractor and comparator using PyTorch on a desktop
equipped with an NVIDIA GeForce RTX 3090 GPU, as
discussed in Section II-B and Section II-C. We randomly select
10 volunteers’ data for the training set and the remaining
volunteers’ data for the test set. During each iteration of the
training and testing, we first randomly select a volunteer, then
we randomly choose a 60s long breathing pattern from the
indexed volunteer dataset, and finally, we randomly crop a
segment of the 60s long breathing pattern ranging from 1s to
5s. This process is repeated 10 times to create the template
inputs. Then we get another segment of breathing pattern
but alternatively choose the same volunteer and a different
volunteer as the authentication input. If we have chosen the
same volunteer, the target of the DNN output is set to 1;
otherwise, we set it to 0. We also add some fake breathing
patterns which are collected by the breathing pattern sampler
with the smartphone speaker towards the wall or towards
nothing to enhance the classification accuracy. We always set
the target of the DNN output to 0 if any of these fake patterns
are chosen.

IV. EVALUATION

A. Overview

To evaluate BreathPass, we use the data we collected to train
and test BreathPass. In general, we use the following metrics
to evaluate the performance of BreathPass:
Accuracy: We use accuracy to determine whether BreathPass
can correctly identify the authorized user whose fingerprints
are stored during the enrollment stage. The accuracy is calcu-
lated as

Accuracy =

∑N
i=1 I(ŷi = yi)

N
, (6)

where N is number of test cases, I is the indicator function, ŷi
is the output given by BreathPass, and yi is the correct label.
In general, the greater the accuracy, the better.
True positive rates (TPR) and false positive rates (FPR):
Besides the accuracy, we also focus on two metrics, i.e.,
true positive rates (TPR) and false positive rates (FPR). We
calculate the TPR by using the equation

TPR =

∑N
i=1 I(ŷi = 1 and yi = 1)∑N

i=1 I(yi = 1)
, (7)

and the FPR is calculated by

FPR =

∑N
i=1 I(ŷi = 1 and yi = 0)∑N

i=1 I(yi = 0)
, (8)

where N is the number of test cases, I is the indicator function,
ŷi is the output given by BreathPass, and yi is the correct label.

When an enrolled user attempts to unlock the device, the
TPR determines the likelihood that the system will success-
fully authenticate. When an unauthorized user attempts to
unlock the device, the FPR determines the possibility that the
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Fig. 5. (a) General performance of BreathPass (b) Performance of different
mobile models

system will pass the authentication by mistake. The higher the
TPR, the better, while the lower the FPR, the better.

Apart from the TPR and FPR, two additional metrics are
used to characterize the authentication system’s performance:
true negative rates (TNR) and false negative rates (FNR),
which indicate the likelihood of an unauthorized user being
successfully blocked by the system and the likelihood of an
authorized user failing the authentication, respectively. How-
ever, we are unconcerned with these two values because an
attacker cannot do anything if the device cannot be unlocked.

B. General Evaluation

Setup: To determine whether the extracted breathing pattern
can be used for authentication, we train and test the fingerprint
extractor and comparator using the dataset we collected. We
have formed the training dataset by randomly choosing 10
volunteers from the whole dataset. In this experiment, we use
the remaining 10 volunteers as well as the fake breathing
patterns (generated from motions other than breathing) to
perform testing. We perform 1000 iterations of testing. During
each iteration, we randomly choose 1s to 5s breathing pattern
segments to form the test datasets with mini-batches of 32,
resulting in a total of 32 × 1000 = 32000 test cases. The
output of the sigmoid function in Equation (5) is in the range
of [0, 1]. If the output is greater than or equal to 0.5, the result
is considered passed; otherwise, the result is considered failed.
Results: As shown in Figure 5(a), BreathPass achieves over
80% accuracies, over 70% TPRs, and less than 10% FPRs for
any segment length of the input breathing pattern. BreathPass
achieves an accuracy of 83%, a TPR of 73%, and an FPR
of 5% when the input breathing pattern is segmented for 1
second, which is the best segment length. As a result, we
assert that the breathing pattern we sampled can be used for
authentication and that when combined with the TPR and the
FPR, BreathPass can serve as a candidate for a “who you are”
scheme.

C. Effectiveness on Different Mobile Models

Setup: To verify whether BreathPass is able to work on differ-
ent mobile models, we launch BreathPass on three different
mobile phones, i.e., Google Pixel 3a, Huawei Mate 9, and
Google Pixel. In this experiment, we use these three mobile
models to collect a volunteer’s breathing pattern respectively.
Then we form the positive test cases by selecting pairs of 1s
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breathing patterns from the collected breathing pattern. After
that, we make pairs of the breathing patterns from a given
mobile model and the test datasets as discussed in Section IV-B
as the negative cases.
Results: As shown in Figure 5(b), there is little difference
between accuracies, TPRs, and FPRs among different mobile
models. Therefore, BreathPass can work on different mobile
models.

D. Influence of Different Kinds of Face Covers

Wearing a face cover may obstruct airflow into the user’s
nose or mouth, thereby altering the user’s breathing pattern.
To characterize the effect of various types of face covers on
users, we prepared four types of commonly used face covers,
i.e., surgical, fabric, KN95, and N95, as shown in Figure 6(a).
There are almost no blocks when wearing the surgical mask,
while the remaining makes breathing harder than wearing
the surgical mask or not wearing a face cover. We would
like to characterize the performance across different kinds of
face covers. In this experiment we only care about TPRs,
which means the possibility of successfully authenticated
while wearing different face covers.
Setup without grouping: In this experiment, we invite a
volunteer to wear each of the four types of face covers
separately and evaluate the BreathPass’s performance. We ask
the volunteer to enroll his breathing pattern with no face cover,
and perform authentication with wearing different kinds of
face covers.
Results without grouping: As shown in figure 6(b), TPRs
decrease while wearing the masks which blocks the airflow,
but almost all of them are over 40%, which means that
the extracted breathing pattern is still feasible while wearing
different kinds of face covers.
Setup with grouping: To further improve the TPRs while
wearing the face covers that blocks the airflow, we can split
the face covers into two groups, i.e., no airflow blocked (no
face covers and surgical) and airflow blocked (fabric, KN95
and N95). We ask the volunteer to enroll with one of them in a
group and perform authentication with wearing another one in
that group. Specifically, we firstly use breathing patterns col-
lected without a face cover to generate the template fingerprint
and use breathing patterns collected with the surgical mask as
the input of the authentication stage. Then we use the KN95
dataset to generate the template fingerprint and use breathing
patterns from the fabric, and the N95 dataset, respectively,
as the input of the authentication stage. Finally, we generate
the template fingerprint using breathing patterns from the N95
dataset and use it to evaluate performance when wearing the
KN95 mask. This is reasonable, as the user could enroll in both
groups separately and choose one manually or automatically
before performing the authentication.
Results with grouping: As shown in figure 6(c), compare to
the TPRs without face cover, all TPRs with a face cover are
decreased, but most of the TPRs are higher than 70%, and in
particular, for 1s, the TPRs are all higher than 80%. Therefore,
BreathPass is feasible across different face covers.

E. Influence of Different Clothes

Setup: Since BreathPass extracts breathing patterns from the
motion of the chest wall and the abdomen, the breathing
pattern collected might be influenced by different clothes
because different wearings might have different effects of
blocking ultrasound signals. In this experiment, we choose the
most common used four kinds of clothes, i.e., T-shirt, hoodie,
sweater, and jacket, as shown in Figure 6(d), and invite a
volunteer to sample his breathing patterns while wearing these
clothes, correspondingly. We then use the dataset collected
with wearing the T-shirt to generate the template fingerprint,
and use the breathing pattern from datasets with wearing all
four clothes correspondingly as the input of the authentication
stage.
Results: As shown in figure 6(e), the TPRs are almost higher
than 65%, and in particular, for 1s, the TPRs are all over
75%. Therefore, BreathPass is feasible across different kinds
of clothes.

F. Influence of Different Postures

Setup: As discussed in Section II-A, different postures result
in different breathing patterns. Therefore, to characterize the
influence of different postures, we invite a volunteer to provide
breathing patterns with the three most common postures,
i.e., sitting, standing, and laying down. We use breathing
patterns extracted from sitting posture to generate the template
fingerprint, and use breathing patterns extracted from all these
three postures respectively as inputs of the authentication
stage.
Results: As shown in figure 7(a), the sitting and standing
posture have higher TPRs than laying down. The TPRs for
sitting and standing are almost higher than 60%, and in
particular, for 1s, the TPRs are all over 70%. Therefore,
BreathPass is feasible across different postures.

G. Influence of Dynamic Status

Setup: Some dynamic status such as walking or after running
may result in different breathing pattern, to verify if Breath-
Pass could still successfully authenticate the user under these
dynamic status. We ask a volunteer to enroll his breathing
pattern while sitting in a quiet room at rest, and perform
authentication while sitting in a quiet room at rest (marked
baseline), during walking, and after running 500m, respec-
tively. We choose 1s as the segment length because, from the
previous experiments, we find that 1s segment length works
well for most cases.
Results: As shown in table I, walking has almost no effect to
authentication. Authentication after running has a bigger effect
as it significantly changes the breathing pattern, however, it
still achieves 78% of the TPR, which means that BreathPass
is feasible when the user is under dynamic status.

H. Influence of Different Environments

Setup: To verify if BreathPass could still successfully au-
thenticate under different environments. We ask a volunteer
to enroll his breathing pattern while sitting in a quiet room
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Fig. 6. Performance of BreathPass with different kinds of masks and clothes
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Fig. 7. (a) TPR of BreathPass with different postures. (b) Performance with
or without average fingerprint technique.

TABLE I
TPRS OF DIFFERENT DYNAMIC STATUS AND ENVIRONMENTS.

Class Baseline Walking Running Outside TV
TPR 97% 94% 78% 78% 80%

at rest, and perform authentication while sitting in a quiet
room at rest (marked baseline), outside while raining (lower
noise), and near a TV set playing a concert with a high volume
(higher noise), respectively. We choose 1s as the segment
length because, from the previous experiments, we find that
1s segment length works well for most cases.
Results: As shown in table I, compare to baseline, authenti-
cation outside while raining and near the TV set decrease the
TPR. It probably because the raining falling down between
the speaker and the chest wall affects the transmition and
reflection of the ultrasound signals, and suppression effects
of the microphone [24] affects the recording quality when
background noise is huge. The TPRs however, are around
80%, which means that BreathPass is feasible under different
environments.

I. Effectiveness of the Average Fingerprint

Setup: During our experiment, we found that even all vol-
unteers in Section III-A are sitting while sampling their
breathing patterns, the DNN-based model also cannot get a
good performance. This is because even a tiny move within the
same posture could result in different breathing patterns that
affect the overall performance. As discussed in Section II-B,
we introduce an average fingerprint technique to eliminate
moving-dependent noises while reserving user-dependent dif-
ferences. In this experiment, we build another model of the
same DNN architecture as discussed in Section II but without
the average fingerprint technique. We choose 1s as the segment
length because, from the previous experiments, we find that 1s

segment length works well for most cases. We compare the
performance between models with and without the average
fingerprint technique to show the effectiveness of the average
fingerprint technique. Specifically, we use the same training
dataset to train the same model without the average fingerprint
technique. After the model converges, we use the same test
dataset as Section IV-B to test the performance.
Results: As shown Figure 7(b), we can find that the accuracy
without the average technique is lower than the model with
the average technique. We can further find that although they
have close TPRs, the FPR without the average technique
is much higher than the model with the average technique,
which is unacceptable. The reason why the model without the
average technique has a high FPR is because the model cannot
eliminate moving-dependent noises, thus taking them as the
feature to construct the fingerprint. Therefore, it is necessary
to apply the average fingerprint technique so that the model
could successfully eliminate moving-dependent noises while
reserving user-dependent differences.

J. Efficiency on Mobile Phones

Setup: To make BreathPass practical, the DNN-model needs
to finish the inference on a mobile device within a reasonable
time limit after a user samples his breathing pattern. To test the
efficiency of BreathPass, we port our model on a Google Pixel
3a Android mobile phone. The application shows the time used
by the DNN-model along with the authentication results. We
perform 10 times of authentication. The configuration is the
same as the previous experiments, and we use 1s segment
length of breathing patterns as the inputs. Specifically, we
enroll 10 breathing signals that each of them is 1s long, and
extract 10 fingerprints, respectively, and store them on the
smartphone. During the authentication stage, after the user
samples his 1s breathing pattern, we first calculate the average
of 10 fingerprints, then take the result of the average and
sampled breathing pattern as the input to the model. The model
extracts the fingerprint of the sampled breathing pattern and
runs the comparator to give the result of the authentication.
Results: We calculate the average running time, and the
result is 855.7 ms, which shows that BreathPass can be used
practically.

V. RELATED WORKS

Ultrasound sensing systems can be used to complete a va-
riety of sophisticated tasks. For example, existing research
efforts [25], [26] employ ultrasound signals to detect sleep
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apnea. Specifically, these works emit modulated ultrasound,
i.e., FMCW chirp or pseudo-white noise signal, and then
use a classification algorithm to determine whether an apnea
symptom exists. Moreover, SpiroSonic [19] uses reflected
ultrasonic signals to detect whether the user’s pulmonary
function is normal. BreathListener [20] also uses reflected
ultrasonic signals to quantify the driver’s breathing status,
thereby determining whether or not the driver is driving safely.
AcuTe [27] measures ambient temperature via ultrasonic sens-
ing by utilizing the linear relationship between temperature
and sound speed.

VI. CONCLUSION

In this paper, we propose BreathPass, a novel biometric
authentication method that is more resilience to replay-attack
and has a high flexibility to mobile devices. It samples
breathing patterns from users and extracts fingerprints from
them to achieve authentication. We believe that BreathPass can
become a candidate of “who you are” unlocking mechanism,
or become complementary to another untrustable mechanism
such as eye recognition to provide authentication service
together.
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