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Abstract—With the increasing popularity of industrial net-
works, driven by the development of the Internet of Things,
cloud computing, and big data, there are still security threats
when it comes to using wireless communication technologies,
including BLE, in these networks. This is primarily due to the
heterogeneity and resource limitations of the devices. To address
the issues of device cloning and enhance BLE device access
authentication, a device authentication mechanism based on
physical features can be employed. By leveraging the uniqueness
and nonreplicability of physical attributes, such as fingerprints,
this mechanism effectively mitigates attacks. Therefore, this
paper proposes a BLE device authentication scheme called
FingerBLE, which relies on the physical fingerprints of devices
at the physical-layer. In terms of system design, this article also
introduces a fingerprint database authentication mechanism that
utilizes the aforementioned fingerprints for node recognition and
legitimacy authentication. Experimental results demonstrate that
FingerBLE is capable of successfully extracting corresponding
device fingerprints and accurately identifying nodes across a wide
range of tests.

Index Terms—BLE network, device fingerprint, feature extrac-
tion

I. INTRODUCTION

With the development of the Internet of Things (IoT), cloud

computing, and big data, the application of the Industrial

Internet of Things (IIoT) is becoming increasingly widespread,

leading to a rapid increase in industrial network devices

like BLE and Wi-Fi devices. However, this increase in the

number of devices also implies a significant increase in the

potential for attacks. For example, in 2017, the Reaper IoT

botnet successfully exploited publicly disclosed vulnerabilities

to infect IoT devices [1]. In 2018, the IoT malware, Hi-

deNSeek, successfully achieved device persistence even after a

reboot, causing irreparable infections [2]. These continuously

emerging and novel network attacks amplify the challenges

and urgency associated with network security.

Meanwhile, due to its advantages such as low power con-

sumption, cost efficiency, and high compatibility, Bluetooth

Low Energy (BLE) is becoming a widely adopted infrastruc-

ture in Industrial Internet of Things (IIoT) [3]. However, BLE

applications often employ a “just works” security method,
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which leaves BLE devices vulnerable to eavesdropping at-

tacks and other risks. For example, NCC Group, a company

specializing in information security, successfully carried out a

relay attack targeting the BLE link layer to breach the keyless

entry system of the Tesla Model 3 and Model Y, which relies

on BLE-based authentication mechanisms, as illustrated in

Fig. 1 [4]. Traditional BLE authentication and network access

processes take place in the broadcast channel, making authenti-

cation information easily captured and vulnerable to malicious

activities such as signal replay and device cloning. These

vulnerabilities pose potential threats to the entire network.

Fortunately, BLE devices commonly possess certain inherent

physical imperfections known as device fingerprints, which

are unique and nonreproducible. By incorporating device fin-

gerprints into the BLE authentication process, the security of

the authentication mechanism can be significantly enhanced,

solving attacks such as signal replay and device cloning.
Insighted by the opportunity, we propose a BLE device

authentication scheme called FingerBLE, which is based on

device fingerprints of the physical layer. The scheme consists

of two stages: the registration stage and the recognition stage.

In the registration stage, we extract features from the BLE

device’s broadcast signal and assess the specificity of the

physical characteristics. High-specificity features are selected

as device fingerprints and added to the fingerprint database.

The nodes registered in the database will be referred to as

legitimate nodes. In the recognition stage, when the BLE nodes

are applied to join the BLE network, we employ similar feature

extraction methods to match and identify device fingerprints.

Only nodes that successfully match will be considered legit-

imate and allowed to access the BLE network. In summary,

this paper makes the following contributions:

• We present the FingerBLE scheme, which utilizes phys-

ical layer device fingerprints for BLE device authentica-

tion in industrial networks.

• We develop a matching and identification mechanism

based on these extracted features to authenticate BLE

devices in an industrial setting.

• We systematically evaluate the effectiveness of the Fin-

gerBLE scheme through extensive experiments.
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Fig. 1. The process of Tesla being attacked. The hacker employs a technique
in which a relay device A is secretly placed within a 14-meter range of a
Tesla owner’s wireless key fob. This device aims to intercept and capture the
signals emitted by the wireless key fob. Additionally, another relay device B
is connected to a laptop and strategically placed in proximity to the vehicle.
By establishing communication between these two relay devices, the captured
BLE signals from the wireless key fob acquired by device A are effectively
replayed and amplified, allowing the vehicle to recognize and perceive them.
Consequently, even if the genuine wireless key fob is physically distant from
the vehicle’s designated communication range, the car can still receive the
key’s signals, enabling the unlocking and ignition processes to ensue.

Overall, this paper contributes to the advancement of secure

authentication solutions for BLE devices in the IIoT.

The remainder of this paper is structured as follows: In

Section II, we provide a comprehensive review of the current

state of relevant research in the field. In Section III, we present

FingerBLE scheme in detail. The effectiveness of the scheme

will be evaluated in Section IV. Finally, Section V concludes

this paper and provides a discussion of the findings.

II. RELATED WORK

There have been many relevant research works in the

field of IIoT device authentication. Xie et al. [5] propose

an active scanning-based network access control scheme that

periodically scans the connected devices, effectively prevent-

ing IP/MAC spoofing attacks. Another study [6] suggests

a comprehensive port scanning approach for IIoT devices,

optimizing the scanning rate to maximize device security and

ensure long-term accuracy of device identification. In order

to prevent attackers from impersonating damaged devices, an

automatic encoder [7] is proposed to detect compromised or

infected devices in the network, denying access to higher-

level networks from these devices. To reduce computational

and energy pressures on the recipient side, a trust evaluation

mechanism for node devices [8] is transplanted to the edge

network, significantly improving the identification efficiency.

With the advancement of machine learning, novel efforts

have been made to analyze the fingerprint features of data

packets in network traffic using machine learning models. This

approach aims to detect and identify whether a data packet

originates from a legitimate device, thereby defending against

malicious data intrusion based on packet traffic analysis.

For instance, in the study by [9], deep neural networks are

employed for deception attack detection. [10] utilizes support

vector machines (SVM) for offline defense against deception

attacks, while [11] employs Gaussian mixture models to en-

hance identity verification privacy. In [12], an anomaly-based

intrusion detection solution is proposed to dynamically and

proactively analyze and monitor all connected devices, with

the aim of detecting device tampering attempts and suspicious

network transactions. This solution calculates out-of-bounds

network profile behaviors by continuously monitoring the

network traffic of each device with expensive hardware infras-

tructure, effectively recognizing vulnerabilities and abnormal

traffic. In [1], a method is proposed that utilizes a set of

sparse auto-encoders to detect anomalous network commu-

nication. By learning legitimate communication profiles for

each node device type, it can automatically differentiate be-

tween malicious and legitimate packets, preserving legitimate

communication while discarding anomalous communication.

The trained model is embedded within the recipient’s device,

eliminating the need for additional hardware infrastructure.

Similar approaches can also be applied to software-defined

networks (SDNs). For example, [13] introduces an SDN-

based proactive alert manager solution deployed in gateways.

It classifies traffic at the gateway and utilizes an ensemble

model to identify attacks within the network, thus detecting

and mitigating malicious traffic. Since these machine learning-

based security mechanisms are established at the information

level, they do not necessarily require the legitimacy of the

node devices. This allows for the existence of malicious nodes

disguised as legitimate nodes. The key lies in observing the

changes in traffic at upper-layer devices to automatically filter

out the data traffic generated by these malicious nodes. These

approaches ensure the dynamic scalability of the network

while safeguarding device security.
For BLE devices, a study [14] proposes the prevention of

device deception and device cloning attacks by monitoring the

operational lifecycle of devices. Unique network flow charac-

teristics are extracted from the link layer and the ATT / GATT

service layer to generate fingerprint features for device authen-

tication. Prior to establishing a connection with a BLE device,

the network observes the link layer transmission signatures and

checks them against a global blacklist database for potential

deception attacks. To improve the accuracy of authentication,

a study [15] suggests using more complex authentication

schemes that incorporate not only device fingerprints, but also

passwords and user information for verification. The aim is to

increase the diversity of authentication information and further

improve anticounterfeiting measures.
Although the aforementioned works have conducted in-

depth research to ensure the legitimacy of industrial network

devices, there are still some challenges:

• Limited applicability: Due to the heterogeneity of de-

vices in the IIoT, many studies cannot be applied directly

to the authentication and identification of BLE network

devices.

• Closed nature of BLE technology: The achievements
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in BLE device authentication are primarily limited to the

link layer and the ATT/GATT service layer, and the data

frames used for authentication still have the possibility

of being forged.

These challenges have also served as one of the key mo-

tivations for the development of FingerBLE. By leveraging

the inherent uniqueness and nonreplicability of the physical

characteristics of BLE devices, FingerBLE enables highly

accurate identification of BLE devices.

III. SCHEME DESIGN

When a BLE device joins the network, the registration

request information of the node is bound to its unique and

tamper-proof physical characteristics. This approach utilizes

the non-reproducibility of device physical features to prevent

network attacks such as device cloning. Based on the afore-

mentioned notion, the specific workings of FingerBLE are

shown in Fig. 2. In the FingerBLE scheme, the BLE network-

ing process can be divided into two stages: the registration

stage and the identification stage. It should be noted that

registering a BLE device in the device fingerprint database

does not imply immediate joining of the BLE network. During

the registration stage, users can extract device fingerprints for

new BLE devices and add these fingerprints to the device

fingerprint database, thus completing the verification of the

node’s legitimacy. In the identification stage, when a new node

wants to join an existing BLE industrial network, the following

process must be completed.

(1) The BLE node initiates a network access request to the

master node of the BLE industrial network.

(2) The device fingerprint extractor of the physical layer

captures the physical signals from the BLE node and

extracts the specified device fingerprint.

(3) The master node sends the BLE device fingerprint to the

database terminal.

(4) The database terminal compares the fingerprint of the

device with the fingerprints of the nodes registered in

the database and returns the result of the comparison.

(5) When the comparison result is true, the joining node

is considered legitimate and the master node sends the

network access information to the node. Otherwise, the

network access request is rejected.

In this section, we will sequentially discuss the processes

of feature extraction from BLE signals, how to evaluate those

features, and the registration and identification stage of the

fingerprint database.

A. Feature Extraction and Evaluation

BLE utilizes the GFSK modulation waveform, allowing

decoding without the need for precise calibration of carrier fre-

quency offset (CFO) and I/Q imperfections [16]. Meanwhile,

these imperfections may exhibit desirable specificity, which

ensures the effectiveness of FingerBLE. However, traditional

BLE receivers only provide a coarse estimation of these

Fig. 2. The overview of FingerBLE.

physical characteristics by examining the preamble of the BLE

signal, rendering the estimation results inadequate for node

identification [17]–[19]. To accurately estimate these features

from the BLE physical signal, we adopt the Joint Estimation

Algorithm proposed in [16]. The general procedure of this

algorithm is shown in Fig. 3. The specific details of the Joint

Estimation Algorithm will be explained in the following text.

After sampling a BLE physical signal, we can decode it to

obtain the corresponding binary sequence, which represents

the encoded form of the data packet. For valid BLE sequences,

the decoded output typically includes a valid CRC that can

be used for packet verification. Then we can reconstruct the

waveform of the signal with GFSK encoding (i.e., by con-

structing the corresponding waveform function). The resulting

ideal unbiased baseband waveform signal, denoted as y, is as

follows:

y = eiω(t)t, (1)

where ω(t) represents the baseband frequency generated by

the decoded binary sequence according to GFSK modulation.

Since the reconstruction process is conducted in a mathemat-

ical sense rather than generating an actual physical signal,

the reconstructed waveform is theoretically unbiased and un-

affected by hardware-related physical impairments in signal

generators and the like. After obtaining the unbiased signal

function, we can introduce offset parameters representing

physical impairments to intentionally distort the waveform,

resulting in a biased signal denoted as y′ as follows [16]:

y′(t) =A

((
1− ε

2

)
cos

(
ω(t)t− φ

2

)
+ I

+ j

((
1 +

ε

2

)
sin

(
ω(t)t+

φ

2

)
+Q

)
ej(φ0+2πf0t),

(2)

where the parameters f0, φ0, A, 1−ε
1+ε , φ, I and Q respectively

represent the carrier frequency offset (CFO), phase offset,

normalized amplitude of the signal, I/Q amplitude imbalance,

I/Q phase imbalance, I-component offset, and Q-component

offset. To determine suitable values for these parameters, in

the Joint Estimation Algorithm, the distorted waveform is
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Fig. 3. The Joint Estimation Algorithm [16].

compared with the original physical waveform. Thus, the

following optimization problem needs to be solved:

min
f0,φ0,A,ε,φ,I,Q

L(f0, φ0, A, ε, φ, I,Q) = ||y′ − y||2. (3)

To accelerate the exploration of the parameters, this method

uses a gradient descent algorithm to iteratively seek the

optimal solution for the optimization problem. Ultimately, the

iterative process aims to align the distorted waveform with the

original input BLE physical signal in terms of its fundamental

shape.

Compared to the traditional approach of using preamble-

based estimation, the Joint Estimation Algorithm relies on the

complete RF signal of the entire data packet, which offers

richer information. Therefore, the accuracy of the estimation is

significantly higher than the former. For example, the accuracy

of the CFO estimation using the latter is 50 Hz, whereas for the

former, it is only 2 kHz [16]. Within a channel bandwidth of

2 kHz, such precision is sufficient to provide ample distinction

for hundreds of BLE nodes.

In order to obtain the global optimum solution for the

optimization problem, the Joint Estimation Algorithm requires

estimation of all possible offset parameters instead of just

a subset of parameters. Furthermore, prior to the estimation

results, we cannot assess the specificity of these parameters.

However, for the following reasons, it is not necessary to

consider all parameters as the final device fingerprints.

• Several highly specific features are sufficient for identify-

ing nodes. Introducing low-specificity features (resulting

from environmental factors, computational errors, etc.)

may actually lower the accuracy.

• Having more features means an increase in computational

and storage cost, which is disadvantageous for rapid

registration and identification of device fingerprints.

Therefore, we employ the robust Maximal Information Coef-

ficient (MIC) as an evaluation metric to assess the association

between different features and node categories. Features with

high MIC values are chosen as device fingerprints.

The mutual information I(X,Y ) is defined as follows:

I(X,Y ) =
∑
X,Y

p(X,Y ) log2
p(X,Y )

p(X)p(Y )
, (4)

where p(X,Y ) represents the joint probability of the feature

X and label Y . However, in general cases, the calculation of

p(X,Y ) for all variables X and Y can be complex. To address

the relationship between two variables, we can discretize them

in a two-dimensional space. By dividing the x-axis and y-

axis into different intervals in this two-dimensional space,

each grid interval will contain a certain number of discrete

points (X,Y ). In this case, the joint probability simplifies the

observation of the distribution of discrete points in different

grid intervals. Thus, the MIC value between X and Y can be

calculated using the formula:

MIC(X,Y ) = min
a·b<B

I(X,Y )

log2 min(a, b)
, (5)

where a represents the number of intervals in the horizontal

axis, b represents the number of intervals in the vertical axis,

and B is an empirical value, typically around 0.6 times the data

size. The resulting MIC value lies in the range [0, 1], where a

higher MIC(X,Y ) indicates a stronger correlation between

the variables X and Y . By comparing the MIC values of

different physical features, we can select more specific features

as device fingerprints for node identification.

B. Fingerprint Registration and Identification

After selecting J highly distinctive physical features as de-

vice fingerprints, we have designed a prototype of a fingerprint

library-based authentication system. The entire fingerprint

authentication process consists of two stages: registration and

identification.

In the registration stage, considering the variability of device

fingerprint distributions, the registered fingerprint is defined by

the following equation:

f i
j =

∑N
n=1 f

i
jn

N
, (6)

where f i
j represents the registered value of device fingerprint

j for node i, f i
jn represents the estimated value of device

fingerprint j computed from registration sample n of node

i, and N is the number of registration samples. These aver-

age registered fingerprints will be added to the registration

database, representing the identity information of the node.

Considering the impact of environmental factors on registra-

tion samples, we need to evaluate the samples by calculating

the sample standard deviation, denoted as stdj :

stdj =

√∑N
n=1

(
f i
jn − f i

j

)2
N − 1

. (7)
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If stdj exceeds a predefined threshold, we perform a DBSCAN

clustering analysis on the current set of device fingerprints

used for registration. We only select samples from a larger

cluster as registration samples, thereby accomplishing the

removal of these outlier samples.
In the identification stage, we extract the device fingerprints

of the signal sample from unknown node, compare those
fingerprints with the registered fingerprints in the fingerprint
database, and identify the unknown node as the registered node
with the closest similarity. This can be achieved with high
accuracy through a straightforward comparison using weighted
Manhattan distance, as represented by the following equation:

ypred(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

argmin
i∈N+[1,N ]

∑J
j=1 αj

∣∣f t
j − f i

j

∣∣ ,
if min

i∈N+[1,N ]

∑J
j=1 αj

∣∣f t
j − f i

j

∣∣ < β,

unknown, otherwise,
(8)

where αj represents the weight of the j-th fingerprint (with

α1 ≡ 1). It can be obtained through techniques such as

gradient descent or manual tuning that maximize the accuracy

on the test set. β is the set confidence threshold, and ypred
denotes the predicted label for the node under test.

IV. EVALUATION

A. Experimental Testbed

In the experiment, we use 51 COTS BLE nodes for the

test. These nodes are from the Silicon EFR32BG22C224F512

model. The physical characteristics of BLE nodes are primarily

determined by their inherent hardware flaws and are generally

independent of the transmitted data packets. Therefore, the ex-

tracted physical features of any transmitted data packet should

be relatively consistent. Therefore, the specific communication

task performed by the BLE nodes is not of concern. For

our experiment, we selected iBeacon broadcasting as the task

executed by the BLE nodes. We developed a signal acquisition

program using Gun Radio software and employed the HackRF

One device to sample the RF signals. Finally, we collected over

20 physical signal sequences for each node. Considering the

potential influence of the environment on the physical flaws

of the nodes, we randomly selected 20 sequences from each

node as registration samples, reserving the remainder as the

test set for evaluating the scheme’s performance.

B. Feature Extraction

Through the Joint Estimation Algorithm, we eventually

extracted 25 candidate physical features. In order to select

features with higher specificity as device fingerprints, the MIC

values of these features were calculated, shown in Table I. By

comparing the MIC values, it was found that features 2, 3,

and 24 exhibit strong specificity, representing CFO, I phase

offset, the average signal amplitude, respectively. However,

the feature 24 is not strictly caused by physical hardware; it

is also influenced by factors such as sampling distance and

environmental noise, making it unsuitable for some scenarios

of mobile networks. Therefore, in order to make the solution

TABLE I
MIC VALUES OF PHYSICAL LEVEL FEATURES

feature MIC feature MIC feature MIC

0 0.1710 10 0.1040 20 0.1773
1 0.2232 11 0.1940 21 0.1964
2 0.9068 12 0.2012 22 0.3057
3 0.6044 13 0.1941 23 0.2936
4 0.1372 14 0.2019 24 0.7486
5 0.1818 15 0.2555
6 0.1769 16 0.2574
7 0.1089 17 0.1924
8 0.1447 18 0.2263
9 0.1216 19 0.1596

compatible with a wider range of network scenarios, features

2 and 3 were ultimately selected as the device fingerprints.

C. Fingerprint Authentication

The fingerprint extraction was performed on the test set and

the fingerprint recognition was performed using the equation 8.

With α1 set to 1, α2 set to 0.002, and β set to 1000, the

resulting normalized confusion matrix is visualized in Fig. 4.

The depth of color within each (i, j) coordinate represents the

proportion of test samples with label i that were identified

as label j, relative to the total number of test samples with

label i. Clearly, the higher the proportion in the diagonal grids

resembling a “\” shape, the higher the recognition accuracy

of the samples from the corresponding node. From Fig. 4, it

can be observed that:

• For most of the test samples, a simple shortest weighted

Manhattan distance method is sufficient for effective

recognition. This further validates that the selected fea-

tures possess good specificity and affirms the effective-

ness of the fingerprint-based authentication mode based

on the physical layer.

• The recognition results for some test samples are con-

centrated on a few labels. Possible reasons for this could

include close similarity in the registered fingerprints of

these labels’ corresponding nodes or an impact of noise

on the test samples.

The overall accuracy of the test set is 89.10%. Precision,

recall and F1 score under micro-average, macro-average,

and weighted average conditions are calculated as shown

in Table II, where “Support” represents the number of test

samples used in calculating the evaluation metrics. Due to

the imbalance in sample distribution, the results based on the

weighted average (where the proportion of each class’s sample

is used as a weight in computing metrics) generally provide

a more fair reflection of the test results. Under the weighted

average condition, those metrics maintain good results, further

validating the specificity of the selected device fingerprints

and the effectiveness of the fingerprint database authentication

mechanism.
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Fig. 4. Normalized confusion matrix in test set.

TABLE II
EVALUATION METRICS FOR IDENTIFICATION RESULTS IN TEST SETS

Precision Recall F1-score Support

micro avg 0.89 0.89 0.89 1046
macro avg 0.72 0.72 0.71 1046

weighted avg 0.90 0.89 0.89 1046

V. CONCLUSION

In this paper, we propose the FingerBLE, a BLE device

authentication scheme based on physical layer device finger-

prints. We utilize the Joint Estimation Algorithm to extract

the parameter CFO and I-phase offset, which serve as device

fingerprints. In the prototype design of the authentication

system, FingerBLE employs a fingerprint database authentica-

tion mechanism, enabling node recognition and verification of

legitimacy. Experimental results demonstrate that FingerBLE

can effectively extract corresponding device fingerprints and

achieve high accuracy in node identification. Using the in-

herent uniqueness and specificity of device fingerprints at the

physical level, FingerBLE offers an effective solution to the

issue of device cloning in IIoT networks.
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Rodrigo López Soto, Christian Dameff, Dinesh Bharadia, and Aaron
Schulman. Evaluating physical-layer ble location tracking attacks on
mobile devices. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1690–1704, 2022.

[17] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. Wire-
less device identification with radiometric signatures. In Proceedings
of the 14th ACM international conference on Mobile computing and
networking, pages 116–127, 2008.
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