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Abstract—There are various methods to monitor human respi-
ration. Traditional methods of monitoring the human respiratory
process often rely on complex medical equipment, which makes
it difficult for users to operate. Nowadays, more and more
researchers are focusing on smartphone-based systems that
use mobile phones to transmit ultrasound to the chest and
abdomen of the human body and use the unique reverse echo of
ultrasound to collect respiratory signals. However, this method
is easily disturbed by the environment, clothing, equipment, and
other factors. Thus, the accuracy is unsatisfactory. This paper
presents a method to optimize the respiratory signals collected
by ultrasound. This method is based on supervised learning.
Piezoelectric sensors and mobile phones are used to monitor
human respiratory signals. A Long-Short Term Memory (LSTM)
is established to learn the expression from ultrasonic signals to
piezoelectric signals to improve the accuracy of signal acquisition.
The results show that the model has good performance in both
the time and frequency domains, achieving less than 0.05 mean
absolute error (MAE) and 0.8779 intersections over union (IoU).
The model can be used to optimize the ultrasound respiratory
signals.

Index Terms—ultrasonic perception; piezoelectric sensing; su-
pervised learning; signal optimization

I. INTRODUCTION

With the improvement of people’s life quality and the devel-

opment of wearable devices, the measurement and monitoring

of individual vital signs have become a topic of great interest.

Respiration is an essential indicator among them. As one of the

most important vital signs in humans, respiratory monitoring

is essential for disease detection and prevention. Respiratory

monitoring can detect many chronic diseases, including asthma

and chronic obstructive pulmonary disease [1]. Monitoring

respiration can also provide insight into a user’s sleep and

emotional state. The elderly commonly experience abnormal

respiratory events, such as obstructive or central sleep ap-

nea [2]. These breathing disorders can reduce sleep quality

and even become life-threatening.

Traditional breath monitoring requires users to wear cum-

bersome and costly equipment on their bodies.

In recent years, some researchers have proposed using

acoustic data to monitor human respiration; the system can

detect the sounds of cough, sneezing, and sniffling. However,

this method is easily disturbed by the surrounding environ-

ment, which limits the scale of current acoustic-data-based

respiration monitor systems [3], [4].

Other researchers proposed using mobile phones to transmit

ultrasonic waves to monitor humans’ respiratory signals. This

method’s advantage is that it is simple to generate transmitted

signals, and individuals can carry them with them at all

times, making it suitable for long-term monitoring in daily

life [1], [2], [5]. In addition, the ultrasonic wave is a kind of

mechanical wave. Therefore, users do not need to worry about

long-term electromagnetic radiation monitoring.

Inhale and exhale are the two steps of the breathing cy-

cle. Air enters the lungs through the mouth or nose during

inhalation, causing the lungs to expand. This will cause

the expansion of the chest wall. Simultaneously, the bottom

diaphragm and the upper abdomen will contract. Inhalation

is the opposite of exhalation. Air will exit the human body

via the mouth or nose. As the air leaves the human body, the

chest wall will contract, and the diaphragm will relax, resulting

in a reduction in the volume of the chest and abdominal

cavities [6]. Respiratory chest movement alters the distance

between the speaker and the microphone, thereby altering the

phase of the reflected signal. After the reflected signal has

passed through the high pass filter and been demodulated, it

is possible to obtain human respiratory motion.

However, the ultrasonic reflection is susceptible to signif-

icant errors, and three factors primarily cause the analysis

noise:

• Due to the non-stationary and non-linear nature of the

ultrasonic signal, its echo signal contains a great deal of

helpful information and numerous abrupt components.

• Ultrasonic waves are reflected on the surface of human

clothing during the sampling process. Various textile ma-

terials will scatter ultrasonic waves to varying degrees in

this process, resulting in microstructure noise.

• The mobile phone will emit dispersive sounds similar to

white noise.

In conclusion, it is necessary to consider additional pro-

cessing of the signal sampled by the system to increase

its reliability. Existing de-noising techniques include, among

others, wavelet threshold de-noising, empirical mode decom-

position (EMD) threshold de-noising, joint wavelet, and EMD

threshold de-noising. However, these methods often result in

signal distortion during reconstruction. It is more difficult to

determine the threshold without prior knowledge of respiratory
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Fig. 1. The system design

signals, so existing noise reduction methods cannot be used.

This paper proposes a method for optimizing the input

signal based on supervised learning. Concurrently, the piezo-

electric sensor and the ultrasonic method of the mobile phone

are used to collect the respiratory signals of users in the same

state. It is believed that the data collected by piezoelectric

sensors is more precise than by ultrasonic transducers. Then,

the supervised learning method is used to input the respiratory

signal recorded by ultrasound and output the respiratory signal

recorded by the piezoelectric sensor to establish a mapping to

learn how to convert the imprecise ultrasonic signal into a

more accurate piezoelectric signal. Then, use the piezoelectric

signal as the input of our system to refine the input signal.

Our significant contributions can be summarized as fol-

lows:

• We use the built-in speakers of off-the-shelf mobile phones

to emit stereo ultrasound signals to monitor human res-

piratory signals. Compared with traditional methods, this

method is portable and easy to operate.

• We propose an optimization method of ultrasonic respiratory

signal acquisition based on supervised learning. We use the

Long Short-Term Memory (LSTM) network to transform

ultrasonic signals into more accurate piezoelectric signals.

The output piezoelectric signal is used as the input of other

systems to improve the system’s accuracy.

• Using several indicators, including MAE and Person cor-

relation, evaluate the system in the time and frequency

domains. In particular, we define the IoU index in the time

domain. The model achieves less than 0.05 MAE, 0.8779

IoU, 0.76 Pearson correlation, and the two signals have a

good similarity in the frequency domain. The evaluation

result shows the effectiveness of this system.

The rest of this paper is organized as follows. Section II

introduces the related work. Section III presents the system

design and the working principles, followed by the implemen-

tation in Section IV. The evaluation of our system is shown

in Section V. Section VI concludes the paper.

II. RELATED WORK

A. Ultrasonic Sensing

In recent years, ultrasonic sensing has been a trendy re-

search topic. Its main principles are ranging and positioning.

The ultrasonic sensor system first obtains the object’s motion

trajectory, then detects the object’s motion through the classi-

fier or modeling. Specific application scenarios include speech

recognition [7], gesture recognition [8]–[10] and respiratory

monitoring [1], [2], [5], [11]–[15]. Specialized ultrasonic sen-

sors were used in past studies to monitor respiration signal [5],

[11]. However, since the built-in speakers and microphones in

mobile phones can also transmit and capture ultrasound signals

caused by motion, more ultrasonic sensing applications are

implemented on smartphones to improve accessibility. Active

sensing, i.e., emitting and receiving ultrasound signals with

the same mobile phone, is commonly used in such cases.

Current works on active ultrasonic sensing mainly focus on

detecting particular events from respiratory signals [2], [12],

[14], or the estimation of certain health metrics [1], [13], [15].

Nevertheless, issues such as human clothing and dispersive

sounds emitted by the phone that might cause interference

with the desired signal are seldom addressed, and there is still

space for further optimization.

B. Piezoelectric Sensing

Piezoelectric sensors can measure physical signals such

as displacement, acceleration, velocity, and pressure. Due

to its comprehensive frequency response and ideal dynamic

characteristics, a piezoelectric sensor is commonly used in

dynamic measurement tasks. The principle of piezoelectric

sensing is that when the human body contacts the sensor,

the sensor converts the small changes in the human body’s

gravity into a charge signal. Piezoelectric sensors can be

made from both organic and inorganic materials. However,

compared with inorganic piezoelectric materials such as alu-

minum nitride (AlN), organic materials such as polyvinylidene

fluoride (PVDF) are less expensive and more environmen-

tally friendly [16]. However, as the output impedance of
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the organic material is high and the output signal is weak,

piezoelectric sensors made from organic material need to go

through the charge amplification circuit to output an electrical

signal [17]. Among the existing methods of respiratory signal

collection, piezoelectric sensing is the most accurate and

sensitive method. Furthermore, piezoelectric sensors can be

easily manufactured into a flexible thin film, so they can be

installed on beds conveniently without interfering with the

users’ sleep. For these reasons, piezoelectric sensing is widely

used to monitor respiration and heartbeat for healthcare and

clinical purposes [18]–[20]. Compared with previous methods,

we innovatively combine ultrasonic and piezoelectric sensing,

taking into account both advantages.

C. LSTM

As an improved recurrent neural network, long short-term

memory network (LSTM) is widely used in machine learning

fields. It can not only solve the problem that RNN cannot

deal with long-distance dependence but also solve common

problems such as gradient explosion or gradient disappearance

in neural networks, which is very effective in processing

sequence data. The structure of the LSTM network is shown

in Fig. 2. Unlike previous RNN models, LSTM is composed

of recurrently connected memory blocks, each containing an

input gate, an output gate [21], and a forget gate [22].

The forget gate determines what information to discard

from the cell state. It inputs the output ht−1 of the previous

state and the input information of the current state Xt into a

Sigmoid function to generate a value between 0 and 1, which is

multiplied by the cell state to determine how much information

to discard (keep). 0 indicates completely discard, and one

indicates completely retain. The forget gate, after connecting

ht−1 and Xt, is multiplied by a weight Wf and biased by bf ,

which is the parameter that the network needs to learn. If the

size of the hidden state (size of a hidden layer of neurons) is

hsize, then the size of Wf is hsize ∗hsize. The value of hsize

is manually set.

The input gate determines what new information to store

in the cell state. It inputs ht−1 from the previous state and

Xt from the current state into a Sigmoid function, producing

a value between 0 and 1 it to determine how much new

information we need to keep. At the same time, a tanh layer

obtains a candidate new information Ct to be added to the

cell state from the output ht−1 of the previous state and the

input Xt of the current state. Multiply the value it with the

candidate new information Ct to get the update we want

to add to the cell state. The input gate (a Sigmoid function

layer) and the tanh layer, both neural network layers, learn

their parameters as before the forget gate.

The output gate determines what information to output

from the cell state. As before, a Sigmoid function will first

produce a number between 0 and 1 ot to determine how

much information in the cell state we need to output. The cell

state information is first activated (nonlinear transformation)

through a tanh layer when multiplied by ot. So the output of

this LSTM block ht is got. The output gate also has its weight

parameters to be learned.

These gates can control the flow of information that enters

or exits the memory block, and the memory block can remem-

ber values over arbitrary time intervals. This structural design

allows LSTM to overcome the vanishing gradient problem

in previous RNN models. Having the capability to maintain

temporal memory, LSTM is an advanced method to deal with

temporal sequences. Relevant applications include time-series

prediction, natural language processing, and image caption-

ing [23]. Furthermore, LSTM has been proven to be helpful

in the fields of sound recognition and signal processing, as

shown in studies by Laffitte et al. [24], Lyu et al. [25], and

Wang et al. [26].

III. METHODOLOGY

A. Overview

The system design is shown in Fig. 1. We simultaneously

obtain ultrasonic and piezoelectric respiratory signals using a

mobile phone and a respiratory belt. Following downsampling,

the Savitsky-Golay filter, and normalization, the ultrasonic

signal is fed into the LSTM network. After low-pass filtering

and normalization, the processed piezoelectric signal serves as

the target output for supervised learning. Once the LSTM is

trained, and a model with good performance is obtained, the

network can convert a standardized ultrasonic input signal into

an output piezoelectric signal.

B. Ultrasonic Data Acquisition

Typically, the built-in speakers of most commercially avail-

able smartphones can produce sounds up to 22 kHz. [12], [14].

Therefore, the ultrasonic signal emitted by the speaker can be

expressed as:

s(t) = cos(2πf1t) + cos(2πf2t), (1)

where f1 = 18, 000 and f2 = 22, 000.

After the microphone records the reflected signal m(t), the

respiratory sampler first uses a high-pass filter to eliminate

components below 16 kHz. The reflected signal m(t) can be

considered as the product of the ultrasonic signal s(t), and the

original respiratory signal x(t) [9], [15]. Therefore,

m(t) = x(t) · s(t). (2)

The original respiratory signal x(t) is demodulated by

multiplying m(t) by s(t), and the result is passed through

a low-pass filter with a low cutoff frequency, such as 200Hz.

According to Equation (1) and (2), we have:

m(t)s(t) = x(t)s2(t) = x(t)[cos(2πf1t) + cos(2πf2t)]
2

= x(t)[cos2(2πf1t) + 2 cos(2πf1t) cos(2πf2t)

+ cos2(2πf2t)]

= x(t){1
2
[1 + cos(2π2f1t)] + cos(2π(f1 + f2)t)

+ cos(2π(f2 − f1)t) +
1

2
[1 + cos(2π2f2t)]}.

(3)
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Fig. 2. LSTM network structure

After passing through the low-pass filter with the cut-

off frequency of 200Hz, the components cos (2π · 2f1t),
cos (2π · 2f2t), cos (2π(f1 + f2)t), and cos (2π(f1 − f2)t)
are eliminated. Therefore, we have

m(t)s(t) =⇒ x(t)

(
1

2
+

1

2

)
= x(t). (4)

The extracted x(t) is used as the respiratory signal for

subsequent steps.

C. Piezoelectric Sensor Acquisition

A piezoelectric sensor is a sensor of the piezoelectric

effect produced by some dielectrics under force. The so-

called piezoelectric effect refers to the phenomenon that some

dielectrics will generate charges on their surfaces due to the

polarization of internal controls when they are deformed (in-

cluding bending and stretching deformation) by external forces

in a specific direction. Piezoelectric materials can be divided

into single piezoelectric crystals, piezoelectric polycrystalline,

and organic piezoelectric materials. The most widely used

piezoelectric sensors are all kinds of piezoelectric ceramics,

including piezoelectric polycrystals and quartz crystals in

piezoelectric monocrystals. Other piezoelectric single crys-

tals, suitable for high-temperature radiation gallants, include

lithium niobate and bismuth germanate.

The accuracy of the pressure sensor made of a semiconduc-

tor core is easily affected by temperature, so the temperature

range of the pressure sensor should be considered. Static accu-

racy refers to the accuracy achieved at a specific temperature. It

can be divided into four grades: 0.01% – 0.1% Full Span(FS) is

super precision, 0.1–1% FS is precision, 1–2% FS is ordinary

precision, and 2–10% FS is low precision.

D. LSTM Network

The LSTM network was built according to the structure

shown in Fig. 2, and the dropout probability was set to be

0.3. The network’s input is the ultrasonic signal after low-pass

filtering and downsampling, and the dimension of each sample

is (480, 1). The network’s output is the filtered piezoelectric

signal, and the dimension of each sample is (250, 1).

The system flow chart is shown in Fig. 1.

Fig. 3. The experimental scenario

Fig. 4. Ultrasonic respiratory signal collected by mobile phone

IV. IMPLEMENTATION

The experimental scenario is depicted in Fig. 3. The study

subject is lying flat on the bed with the breathing belt in its

exact position directly below the chest and the mobile phone

speaker placed directly above the body, perpendicular to the

chest. The participant maintains a steady respiration rate while

the two devices collect data simultaneously.

The mobile phone speaker is positioned perpendicular to the

participant’s chest. The left channel transmits 18 kHz high-

frequency signals, while the right channel transmits 22 kHz

signals. The distance between the mobile phone speaker and

the human body is about 5–10 cm. After the chest wall reflects

the signal, the mobile phone’s microphone receives the signal.

The respiratory signal of the human body can be obtained after

demodulation. The respiration sampler for this experiment is a

Samsung Galaxy Z flip 5G smartphone running Android 12 at

a sampling rate of 48 kHz. Ten volunteers’ respiratory signals

are collected. Each sample is collected for five minutes. The

sampled signals are shown in Fig. 4.

Fig. 5(a) shows that the signal has a carrier frequency.

A smoothing workflow is required to filter out this carrier

and make the transition along the curve more gradual. We
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(a)

(b)

Fig. 5. (a) Original ultrasonic signal (b) Filtered ultrasonic signal

use a Savitsky-Golay filter to process the ultrasonic signal.

The filtering results are depicted in Fig. 5(b), and the curve

becomes smooth.

We use a sleep monitoring tape to collect piezoelectric

signals. Its piezoelectric thin-film sensor is sensitive to weak

dynamic signals, including respiratory and heart rate signals.

The sleep monitoring belt is laid flat on the bed when in

use. When a person is lying on a bed, the piezoelectric film

sensor can detect the heartbeat and breathing fluctuations. The

respiratory and heart rates can be calculated and obtained.

In this experiment, we only require the respiration-related

piezoelectric signal.

Due to the hypersensitivity of the piezoelectric film, it is

impossible to accurately determine whether or not a person

is on or off the bed. A minor disturbance at the bedside

could trigger a false alarm. This system’s breathing belt has

a shielding function, providing excellent environmental anti-

interference. The membrane pressure sensor will only output

a pressure signal when the human body is supine, reducing

the likelihood of error.

The thin-film pressure sensor and piezoelectric thin-film

sensor are integrated into a 1.5 mm thick cloth belt with a

Universal Asynchronous Receiver/Transmitter (UART) signal

acquisition circuit board, as shown in Fig. 6. The Microcon-

troller Unit (MCU) of the circuit board contains an algorithm

that can directly output heart rate, respiratory rate, and other

information.

The input voltage of the breathing belt is 5V (DC). We

acquire data using the UART interface with a baud rate

of 115200. First, the original 57-byte signal data packet is

returned. The first 5 bytes are the American Standard Code

for Information Interchange (ASCII) characters of Odata,

followed by 50 bytes containing 25 groups of data, with a

2-byte, signed hexadecimal integer in each group (-32768–

Fig. 6. UART signal acquisition circuit board

Fig. 7. the waveform of respiratory signal

32767). Representing the piezoelectric signal, the lower bit is

in front, and the higher bit is in the back. The rate of sampling

is 25 Hz. The final two bytes are also a signed hexadecimal

integer, but the effective range is 0–4096, and the sampling

rate is 1 Hz. They represent the piezoresistive signal.

A 9-byte result packet is then returned, with the first 5

bytes containing the ASCII characters for Bdata. A 1-byte

unsigned integer serial number ranging from 0 to 59 is fol-

lowed. The next 1-byte status value is an unsigned integer, with

0 indicating that the user is in bed, 1 indicating that the user

has left the bed, 2 indicating that the user’s body is moving,

3 indicating weak respiration, 4 indicating that a heavy object

is on the bed (not a person), and 5 indicating that the user

is snoring. The eighth 1-byte value is an unsigned integer

representing the heart rate, followed by a 1-byte respiration

rate. When respiration is weak, the output respiration rate is

0. After the user lies in bed for 25 seconds, the monitoring

tape activates and returns the heart and respiratory rates via

serial communication.

The data returned by the breathing belt is retrieved using a

serial port debugging tool. Every second, 66 bytes of data

will be returned. As depicted in Fig. 7, the returned data

is processed to obtain the respiratory signal waveform. The

ordinate represents the signal’s amplitude, while the abscissa

represents time. The piezoelectric respiratory signal is passed

through a low-pass filter with a cut-off frequency of 1 Hz, and

the waveform is shown in Fig. 8.

For the experiment, ten participants’ data were collected.

The volunteers, aged between 20 and 50, were five men and

five women in good health. During the experiment, they were

asked to lie flat on the bed at rest and breathe evenly. We had

all the volunteers wear either a shirt or a T-shirt during the

experiment.

In the same state, each data consists of an ultrasonic signal
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Fig. 8. the waveform of filtered piezoelectric respiratory signal

Fig. 9. The waveform of the piezoelectric and ultrasonic respiratory signal

and a piezoelectric signal with a duration of one minute.

Within 10 seconds, they were aligned according to time and

randomly cut into fragments. A total of 2,000 data groups were

collected. The clipped ultrasonic signal segment serves as the

input to the network, while the piezoelectric signal segment

serves as the desired output. To train and evaluate the network,

we randomly selected 1,600 groups of data as the training set

and the remaining 400 groups as the test set.

As shown in Fig. 9, the piezoelectric and ultrasonic signals

are collected simultaneously in the same state, and it could be

roughly observed that the data are correlated.

V. EVALUATION

This section will evaluate the model’s performance in both

the time and frequency domains.

A. Time Domain Analysis

We use the mean absolute error (MAE), the intersection

over union (IoU), and the Pearson correlation coefficient in

the time domain to evaluate the model.

1) Mean Absolute Error (MAE): The mean absolute error

is calculated as

MAE =

∑N
i=1|ŷi − yi|

N
, (5)

where N is number of test cases, ŷi is the output given by

the model, and yi is the correct output. It shows the average

value of the absolute error between the predicted value and

the observed value. In general, the lower the MAE, the better.

We perform 1,000 iterations of testing on the LSTM model.

As shown in Fig. 10, the model achieves less than 0.05 MAE.

Fig. 10. The loss curve

(a) (b)

Fig. 11. (a) The model output results and the corresponding piezoelectric
signal results (b) Ultrasonic input data

2) Intersection over Union (IoU): To further verify the

model’s performance, we take a group of data with a length of

10 seconds as the model’s input, which does not belong to the

training set or the test set. The ultrasonic input data is shown

in Fig. 11(b). The model output results and the corresponding

piezoelectric signal results are shown in Fig. 11(a).

We use the intersection over union (IoU) in the time domain

to measure the similarity between the predicted signal and the

ground truth. IoU is a standard for measuring the accuracy of

detecting corresponding objects in a specific data set.

Here, we define the IoU of the two signals f(t) and g(t)
as:

IoU =

∫ T

0
min(f(t), g(t)) dt∫ T

0
max(f(t), g(t)) dt

(6)

That is, subtracting the intersection of two signals from

the union of two signals. The definition of the union and

intersection of signals is shown in Fig. 12. The larger the

IoU, the better. When the IoU equals 1, the two signals are

the same.

The IoU of the two signals in Fig. 11(a) is calculated to

be 0.8779, indicating that the signal we predicted is highly

similar to the ground truth.

3) Pearson correlation coefficient: The Pearson correlation

coefficient measures the degree of correlation between two

variables, and its value is between -1 and 1. When the Pearson

coefficient equals 1, it means a complete positive correlation,

0 means no correlation, and -1 means an absolute negative

correlation.
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(a) (b)

Fig. 12. (a) Intersection of two signals (b) Union of two signals

The Pearson correlation coefficient between two variables

is defined as the quotient of covariance and standard deviation

between two variables:

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − μX)(Y − μY )]

σXσY
. (7)

The above formula represents the overall correlation coef-

ficient, and ρ is often used as the representative symbol. The

Pearson correlation coefficient can be obtained by estimating

the covariance and standard deviation of the sample, which is

commonly expressed as γ:

γ =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(8)

The greater the absolute value of the Pearson correlation

coefficient, the greater the degree of correlation. The Pearson

correlation coefficient of the two curves in 11(a) is 0.76. It

shows that the predicted value correlates well with the ground

truth.

B. Frequency Domain Analysis

We perform a fast Fourier transform (FFT) on the two

signals in Fig. 11(a) to obtain the frequency domain diagram

of the two signals, as shown in Fig. 13. After filtering the DC

component, the first harmonic of the two signals is observed

to be 0.4 Hz. The second harmonic frequency is 0.6 Hz.

Therefore, the two signals have a high frequency domain

similarity.

VI. CONCLUSION

Numerous systems have begun attempting to use mobile

phones to emit ultrasound to monitor vital human health

metrics due to their portability and usability. However, mo-

bile phone ultrasonic waves are easily perturbed, resulting

in significant errors. This paper uses piezoelectric sensors

and supervised learning methods to propose a method for

optimizing ultrasonic signals for monitoring human respiratory

signals using ultrasonic waves emitted by mobile phones. The

trained model performs admirably. This technique can increase

the reliability of ultrasonic signals to improve the performance

of other systems.
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Short-term Memory Model,” Artificial Intelligence Review, vol. 53,
no. 8, pp. 5929–5955, 2020.

[24] P. Laffitte, Y. Wang, D. Sodoyer, and L. Girin, “Assessing the Perfor-
mances of Different Neural Network Architectures for the Detection
of Screams and Shouts in Public Transportation,” Expert systems with
applications, vol. 117, pp. 29–41, 2019.

[25] C. Lyu, Z. Liu, and L. Yu, “Block-sparsity Recovery via Recurrent
Neural Network,” Signal Processing, vol. 154, pp. 129–135, 2019.

[26] Q. Wang, P. Du, J. Yang, G. Wang, J. Lei, and C. Hou, “Transferred Deep
Learning Based Waveform Recognition for Cognitive Passive Radar,”
Signal processing, vol. 155, pp. 259–267, 2019.

361


