
xRSA: Construct Larger Bits RSA

on Low-Cost Devices

Fan DANG, Lingkun LI, Jiajie CHEN

Background

PKI

Background

RSA is too heavy for low-cost devices (e.g., MCUs)

Background

Background

Requires RSA-4096 to get A+

Preliminaries

 How does an MCU accelerate RSA?

 How do we compute RSA fast?

Montgomery Modular Multiplication

Chinese Remainder Theorem

Preliminaries: Montgomery Modular Multiplication

Preliminaries: Montgomery Modular Multiplication

 The modulus is a k-bit prime number p.

 Let R=2𝑘 .

 A number 𝑎 in its Montgomery form is

𝑎 = 𝑎 ⋅ 𝑅 mod 𝑝

 The Montgomery Modular Multiplication is defined as

𝑎 ⊗ 𝑏 = 𝑎 ⋅ 𝑏 ⋅ 𝑅−1 mod 𝑝

Preliminaries: Montgomery Modular Multiplication

 With Montgomery modular multiplications

 Turn a number into Montgomery domain

𝑎 = 𝑎 ⊗ 𝑅2 = 𝑎 ⋅ 𝑅 mod 𝑝

 Turn a number back

𝑎 = 𝑎 ⊗ 1

Preliminaries: Chinese Remainder Theorem

 Raw RSA

 Public key: (𝑝, 𝑞, 𝑒)

 Private key: 𝑝, 𝑞, 𝑑 . Plaintext 𝑚 = 𝑀𝑑 mod 𝑁.

 RSA-CRT

 Public key: (𝑝, 𝑞, 𝑒)

 Private key: 𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞 , 𝑞𝑖𝑛𝑣 , where

𝑑𝑝 = 𝑑 mod (𝑝 − 1), 𝑑𝑞 = 𝑑 mod (𝑞 − 1), 𝑞𝑖𝑛𝑣 = 𝑞−1 mod 𝑝

RSA-4096

4096-bit

2048-bit

Preliminaries: Chinese Remainder Theorem

2048-bit

4096-bit

Algorithm

 Challenge 1: compute 𝑅2, where 𝑅 = 22048

𝑟 = 𝑅 − 1 ⊕ 1

𝑟1 = 𝑟 ⊕ 𝑟 = 2 ⋅ 𝑅 mod 𝑝

𝑟2 = 𝑟1 ⊗ 𝑟1 = 22 ⋅ 𝑅 mod 𝑝

𝑟3 = 𝑟2 ⊗ 𝑟2 = 23 ⋅ 𝑅 mod 𝑝

…

𝑟2048 = 𝑟2047 ⊗ 𝑟2047 = 22048 ⋅ 𝑅 mod 𝑝

Algorithm

 Challenge 2: compute 𝑚𝑑𝑝 mod 𝑝

Divide 𝑚 into two parts: 𝑚1(highest 2048 bits) & 𝑚2(lowest 2048 bits) , i.e.,

𝑚 = 𝑚1 ⋅ 𝑅 + 𝑚2

𝑚mod 𝑝 = 𝑚1 ⋅ 𝑅 + 𝑚2 mod 𝑝

= 𝑚1 ⊗𝑅2 ⊕𝑚2

Algorithm

 Challenge 2:

compute 𝑚𝑑𝑝 mod 𝑝

Fast exponentiation

with a constant time

Algorithm

 Challenge 3: compute 𝑥 ⋅ 𝑦, where

𝑥, 𝑦 are 2048-bit numbers

Divide 𝑥, 𝑦 into two parts, respectively:

𝑥1, 𝑦1 (highest 1024 bits) &

𝑥2, 𝑦2(lowest 1024 bits)

Let HI(x) denote highest 1024 bits of x,

LO(x) denote lowest 1024 bits of x.

 Why can we use the MM

to compute a normal

multiplication?

Algorithm

 Why can we use the MM to compute a normal multiplication?

 𝑅−1 ≡ 1mod 𝑅 − 1

 𝑎 ⊗ 𝑏 = 𝑎 ⋅ 𝑏 mod 𝑅 − 1

 Since 𝑎, 𝑏 < 21024, we have 𝑎 ⋅ 𝑏 < 𝑅 − 1

Complexity

6148 ⊗ ops

6148 ⊗ ops

4 ⊗ ops

4 ⊗ ops

12,304 ⊗ ops

Implementation

https://github.com/canokeys

Evaluation

RSA-4096 performance on a 48 MHz MCU:

203x faster

29.7% slower than the native RSA-4096 acceleration

Automated correctness test

Conclusion

 We design an algorithm that uses the most existing 2048-bit

Montgomery modular multiplier to achieve a 4096-bit RSA

cryptography mechanism without replacing any circuit component.

 We implement the 4096-bit RSA cryptography on an existing device,

which is equipped with a 2048-bit Montgomery modular multiplier.

 Experiment results show that our method achieves the correct

behavior of 4096-bit RSA cryptography, and makes it over 200x faster

than the software-based solution.

Thanks!

