

xRSA: Construct Larger Bits RSA on Low-Cost Devices

Fan DANG, Lingkun LI, Jiajie CHEN

MICHIGAN STATE

STM32L562E Cortex-M33 at 110 MHz

Symmetric Algorithm	Software (MB/	s)	Accelerat	ed (MB/s)
AES-CBC-128	0.121		4.468	
AES-GCM-128	0.008		3.662	
SHA-256	0.136		1.855	
Asymmetric Algorithm	Software (ops/sec)	Accelerated (ops/sec) SP Math Cortex-M		Accelerated (ops/sec) ST PKA ECC
RSA 2048 public	9.208	18.083		18.083
RSA 2048 private	0.155	0.526		0.526
DH 2048 key gen	0.833	1.129		1.129
DH 2048 agree	0.411	1.128		1.128
ECC 256 key gen	0.661	35.608		10.309
ECDHE 256 agree	0.661	16.575		10.619
ECDSA 256 sign	0.652	21.912		20.542
ECDSA 256 verify	1.014	10.591		10.667

RSA is too heavy for low-cost devices (e.g., MCUs)

STM32L562xx

Ultra-low-power Arm[®] Cortex[®]-M33 32-bit MCU+TrustZone[®]+FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AES+PKA

Datasheet - production data

Security

ESP32-C3 ensures that the availability of features, such as the RSA-3072based secure boot and the AES-128-XTS-based flash encryption, can be used to build connected devices securely. The innovative digital signature

PKA main features:

- Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically:
 - RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation
 - ECC scalar multiplication, point on curve check
 - ECDSA signature generation and verification
- Capability to handle operands up to 3136 bits for RSA/DH and 640 bits for ECC.
- Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication.

Certificate #1: RSA 2048 bits (SHA256withRSA)

Requires RSA-4096 to get A+

Preliminaries

How does an MCU accelerate RSA?
 Montgomery Modular Multiplication

How do we compute RSA fast?

Chinese Remainder Theorem

Preliminaries: Montgomery Modular Multiplication

Preliminaries: Montgomery Modular Multiplication

- The modulus is a \underline{k} -bit prime number \underline{p} .
- Let $R=2^k$.
- A number a in its Montgomery form is $\overline{a} = a \cdot R \mod p$
- The Montgomery Modular Multiplication is defined as $a \otimes b = a \cdot b \cdot R^{-1} \mod p$

Preliminaries: Montgomery Modular Multiplication

- With Montgomery modular multiplications
- Turn a number into Montgomery domain
 $\overline{a} = a \otimes R^2 = a \cdot R \mod p$

Turn a number back

 $a = \overline{a} \otimes 1$

Preliminaries: Chinese Remainder Theorem

Raw RSA

RSA-4096

- Public key: (p, q, e)
- Private key: (p, q, d). Plaintext $m = M^d \mod N$. \leftarrow 4096-bit
- RSA-CRT
 - Public key: (p, q, e)

Private key:
$$(p, q, d_p, d_q, q_{inv})$$
, where
 $d_p = d \mod(p-1), d_q = d \mod(q-1), q_{inv} = q^{-1} \mod p \leftarrow 2048$ -bit

Preliminaries: Chinese Remainder Theorem

Algorithm 1 Private-key operation of RSA-CRT. **Require:** message m, private key $(p, q, d_p, d_q, q_{inv})$ **Ensure:** $m^d \mod N$ 1: $S_p = m^{d_p} \mod p$ 2: $S_q = m^{d_q} \mod q$ **— 2048-bit** 3: $h = q_{inv} \cdot (S_p - S_q) \mod p$ 4: $S = S_q + h \cdot q \mod N \leftarrow 4096$ -bit 5: return S

• Challenge I: compute
$$R^2$$
, where $R = 2^{2048}$
 $r = (R - 1) \oplus 1$
 $r_1 = r \oplus r = 2 \cdot R \mod p$
 $r_2 = r_1 \otimes r_1 = 2^2 \cdot R \mod p$
 $r_3 = r_2 \otimes r_2 = 2^3 \cdot R \mod p$
...
 $r_{2048} = r_{2047} \otimes r_{2047} = 2^{2048} \cdot R \mod p$

• Challenge 2: compute $m^{d_p} \mod p$

Divide m into two parts: m_1 (highest 2048 bits) & m_2 (lowest 2048 bits), i.e.,

$$m = m_1 \cdot R + m_2$$

$$m \mod p = (m_1 \cdot R + m_2) \mod p$$

$$= (m_1 \otimes R^2) \oplus m_2$$

Challenge 2:
 compute m^{dp} mod p

Fast exponentiation with a constant time

Algorithm 3 A variant of the fast exponentiation algorithm. **Require:** $\overline{m} = m \mod p$, and d_p Ensure: $m^{d_p} \mod p$ 1: $y = 1 \otimes R^2$ 2: $t = \overline{m} \otimes R^2$ 3: for i = 1; $i \le 2048$; $i \leftarrow i + 1$ do if the rightmost bit of d_p is 1 then 4: $y \leftarrow y \otimes t$ 5: else 6: $dummy \leftarrow y \otimes t$ 7: end if 8: $t \leftarrow t \otimes t$ 9: $d_p \leftarrow d_p >> 1$ 10: 11: **end for** 12: return $y \otimes 1$

 $S = S_q + h \cdot q \mod N$

Challenge 3: compute x · y, where x, y are 2048-bit numbers

Divide x, y into two parts, respectively:

 x_1, y_1 (highest 1024 bits) & x_2, y_2 (lowest 1024 bits)

Let HI(x) denote highest 1024 bits of x,

LO(x) denote lowest 1024 bits of x.

The composition of $x \cdot y$

4096~3073	3072~2049	2048~1023	1024~1
$\operatorname{HI}(x_1y_1)$	$egin{array}{l} \operatorname{LO}(x_1y_1)\ \operatorname{HI}(x_1y_2)\ \operatorname{HI}(x_2y_1)\end{array}$	$egin{array}{l} \operatorname{LO}(x_1y_2)\ \operatorname{LO}(x_2y_1)\ \operatorname{HI}(x_2y_2) \end{array}$	$LO(x_2y_2)$

Why can we use the MM to compute a normal multiplication?

- Why can we use the MM to compute a normal multiplication?
 - $\blacksquare R^{-1} \equiv 1 \mod (R-1)$
 - $a \otimes b = a \cdot b \mod (R-1)$
 - Since $a, b < 2^{1024}$, we have $a \cdot b < R 1$

Complexity

Algorithm 1 Private-key operation of RSA-CRT.

Require: message *m*, private key $(p, q, d_p, d_q, q_{inv})$ **Ensure:** $m^d \mod N$

1:
$$S_p = m^{d_p} \mod p$$
 $\leftarrow 6148 \otimes \text{op}$
2: $S_q = m^{d_q} \mod q$ $\leftarrow 6148 \otimes \text{op}$

3:
$$h = q_{inv} \cdot (S_p - S_q) \mod p$$

4: $S = S_q + h \cdot q \mod N$

$$- 6148 \otimes \text{ops}$$

• **4** 🛞 ops

5: return S

Implementation

https://github.com/canokeys

Evaluation

RUNNING TIME OF SIGNING USING GNUPG

	CanoKey	YubiKey 5 NFC
Average running time	$869\mathrm{ms}$	$670\mathrm{ms}$

29.7% slower than the native RSA-4096 acceleration

RSA4096 key import Addkey 4 4096 # [10] gen RSA4096 key Key2card 10 3 # key[10] to Authentication key Addkey 6 4096 # [11] gen RSA4096 key Key2card 11 2 # key[11] to Encryption key GPGAuth GPGEnc Addkey 4 4096 # [12] gen RSA4096 key Key2card 12 1 # key[12] to Signature key GPGSign

Automated correctness test

Conclusion

- We design an algorithm that uses the most existing 2048-bit Montgomery modular multiplier to achieve a 4096-bit RSA cryptography mechanism without replacing any circuit component.
- We implement the 4096-bit RSA cryptography on an existing device, which is equipped with a 2048-bit Montgomery modular multiplier.
- Experiment results show that our method achieves the correct behavior of 4096-bit RSA cryptography, and makes it over 200x faster than the software-based solution.

