xRSA: Construct Larger Bits RSA on Low-Cost Devices

Fan DANG, Lingkun LI, Jiajie CHEN

Background

הMQTT

Background

STM32L562E Cortex-M33 at 110 MHz

| Symmetric Algorithm | Software (MB/s) | Accelerated (MB/s) | |
| :--- | :--- | :--- | :--- | :--- |
| AES-CBC-128 | 0.121 | | 4.468 |
| AES-GCM-128 | 0.008 | | 3.662 |
| SHA-256 | 0.136 | | 1.855 |
| Asymmetric Algorithm | Software (ops/sec) | Accelerated (ops/sec)
 SP Math Cortex-M | Accelerated (ops/sec)
 ST PKA ECC |
| RSA 2048 public | 9.208 | 18.083 | 18.083 |
| RSA 2048 private | 0.155 | 0.526 | 0.526 |
| DH 2048 key gen | 0.833 | 1.129 | 1.129 |
| DH 2048 agree | 0.411 | 1.128 | 1.128 |
| ECC 256 key gen | 0.661 | 35.608 | 10.309 |
| ECDHE 256 agree | 0.661 | 16.575 | 10.619 |
| ECDSA 256 sign | 0.652 | 21.912 | 20.542 |
| ECDSA 256 verify | 1.014 | 10.591 | 10.667 |

RSA is too heavy for low-cost devices (e.g., MCUs)

Background

Block Diagram of ESP32-C3

57
life.augmented
STM32L562xx

Ultra-low-power Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M33 32-bit MCU+TrustZone ${ }^{\circledR}+$ FPU, 165DMIPS, up to 512 KB Flash, 256 KB SRAM, SMPS, AES+PKA

Datasheet - production data

KL81 MCU Only

Background

Security

ESP32-C3 ensures that the availability of features, such as the RSA-3072based secure boot and the AES-128-XTS-based flash encryption, can be used to build connected devices securely. The innovative digital signature

PKA main features:

- Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically:
- RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation
- ECC scalar multiplication, point on curve check
- ECDSA signature generation and verification
- Capability to handle operands up to 3136 bits for RSA/DH and 640 bits for ECC.
- Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication.

Requires RSA-4096 to get A+

Preliminaries

- How does an MCU accelerate RSA?

Montgomery Modular Multiplication

- How do we compute RSA fast?

Chinese Remainder Theorem

Preliminaries: Montgomery Modular Multiplication

Preliminaries: Montgomery Modular Multiplication

- The modulus is a \boldsymbol{k}-bit prime number \boldsymbol{p}.
- Let $\mathrm{R}=2^{k}$.
- A number a in its Montgomery form is

$$
\bar{a}=a \cdot R \bmod p
$$

- The Montgomery Modular Multiplication is defined as

$$
a \otimes b=a \cdot b \cdot R^{-1} \bmod p
$$

Preliminaries: Montgomery Modular Multiplication

- With Montgomery modular multiplications
- Turn a number into Montgomery domain

$$
\bar{a}=a \otimes R^{2}=a \cdot R \bmod p
$$

- Turn a number back

$$
a=\bar{a} \otimes 1
$$

Preliminaries: Chinese Remainder Theorem

- Raw RSA

RSA-4096

- Public key: (p, q, e)
- Private key: (p, q, d). Plaintext $m=M^{d} \bmod N$. \smile 4096-bit
- RSA-CRT
- Public key: (p, q, e)
- Private key: $\left(p, q, d_{p}, d_{q}, q_{i n v}\right)$, where

$$
d_{p}=d \bmod (p-1), d_{q}=d \bmod (q-1), q_{i n v}=q^{-1} \bmod p \rightleftharpoons \text { 2048-bit }
$$

Preliminaries: Chinese Remainder Theorem

Algorithm 1 Private-key operation of RSA-CRT.
Require: message m, private key $\left(p, q, d_{p}, d_{q}, q_{\text {inv }}\right)$
Ensure: $m^{d} \bmod N$

$$
\begin{aligned}
& \text { 1: } S_{p}=m^{d_{p}} \bmod p \\
& \text { 2: } S_{q}=m^{d_{q}} \bmod \bar{q} \quad \Leftarrow \text { 2048-bit } \\
& \text { 3: } h=q_{i n v} \cdot\left(S_{p}-S_{q}\right) \bmod p \\
& \text { 4: } S=S_{q}+h \cdot q \bmod N=\text { 4096-bit }
\end{aligned}
$$

5: return S

Algorithm

- Challenge I: compute R^{2}, where $R=2^{2048}$

$$
\begin{aligned}
& r=(R-1) \oplus 1 \\
& r_{1}=r \oplus r=2 \cdot R \bmod p \\
& r_{2}=r_{1} \otimes r_{1}=2^{2} \cdot R \bmod p \\
& r_{3}=r_{2} \otimes r_{2}=2^{3} \cdot R \bmod p
\end{aligned}
$$

$$
r_{2048}=r_{2047} \otimes r_{2047}=2^{2048} \cdot R \bmod p
$$

Algorithm

- Challenge 2: compute $m^{d_{p}} \bmod p$

Divide m into two parts: m_{1} (highest 2048 bits) \& m_{2} (lowest 2048 bits) , i.e.,

$$
\begin{aligned}
& m=m_{1} \cdot R+m_{2} \\
& m \bmod p=\left(m_{1} \cdot R+m_{2}\right) \bmod p \\
& = \\
& =\left(m_{1} \otimes R^{2}\right) \oplus m_{2}
\end{aligned}
$$

Algorithm

- Challenge 2 :
compute $m^{d_{p}} \bmod p$
Fast exponentiation with a constant time

```
Algorithm 3 A variant of the fast exponentiation algorithm.
Require: \(\bar{m}=m \bmod p\), and \(d_{p}\)
Ensure: \(m^{d_{p}} \bmod p\)
    \(y=1 \otimes R^{2}\)
    \(t=\bar{m} \otimes R^{2}\)
    for \(i=1 ; i \leq 2048 ; i \leftarrow i+1\) do
        if the rightmost bit of \(d_{p}\) is 1 then
            \(y \leftarrow y \otimes t\)
        else
            dummy \(\leftarrow y \otimes t\)
        end if
        \(t \leftarrow t \otimes t\)
        \(d_{p} \leftarrow d_{p} \gg 1\)
    end for
    return \(y \otimes 1\)
```

Algorithm

- Challenge 3: compute $x \cdot y$, where x, y are 2048-bit numbers

Divide x, y into two parts, respectively:
x_{1}, y_{1} (highest 1024 bits) \&
x_{2}, y_{2} (lowest 1024 bits)
Let $\mathrm{HI}(\mathrm{x})$ denote highest 1024 bits of x , LO(x) denote lowest 1024 bits of x.

$$
S=S_{q}+h \cdot q \bmod N
$$

The Composition of $x \cdot y$

$4096 \sim 3073$	$3072 \sim 2049$	$2048 \sim 1023$	$1024 \sim 1$
$\mathrm{HI}\left(x_{1} y_{1}\right)$	$\mathrm{LO}\left(x_{1} y_{1}\right)$		
	$\mathrm{HI}\left(x_{1} y_{2}\right)$	$\mathrm{LO}\left(x_{1} y_{2}\right)$	
	$\mathrm{HI}\left(x_{2} y_{1}\right)$	$\mathrm{LO}\left(x_{2} y_{1}\right)$	
		$\mathrm{HI}\left(x_{2} y_{2}\right)$	$\mathrm{LO}\left(x_{2} y_{2}\right)$

- Why can we use the MM to compute a normal multiplication?

Algorithm

- Why can we use the MM to compute a normal multiplication?
- $R^{-1} \equiv 1 \bmod (R-1)$
- $a \otimes b=a \cdot b \bmod (R-1)$
- Since $a, b<2^{1024}$, we have $a \cdot b<R-1$

Complexity

Algorithm 1 Private-key operation of RSA-CRT.
Require: message m, private key $\left(p, q, d_{p}, d_{q}, q_{\text {inv }}\right)$
Ensure: $m^{d} \bmod N$

$$
\begin{array}{ll}
\text { 1: } S_{p}=m^{d_{p}} \bmod p & \smile 6148 \otimes \\
\text { 2: } S_{q}=m^{d_{q}} \bmod q & \smile 6148 \otimes \\
\text { 3: } h=q_{i n v} \cdot\left(S_{p}-S_{q}\right) \bmod p & \smile 4 \otimes \mathrm{ops} \\
\text { 4: } S=S_{q}+h \cdot q \bmod N & \smile 4 \otimes \mathrm{ops}
\end{array}
$$

5: return S

Implementation

https://github.com/canokeys

Evaluation

RUNNING TIME OF SIGNING USING GNUPG

	CanoKey	YubiKey 5 NFC
Average running time	869 ms	670 ms

29.7% slower than the native RSA-4096 acceleration

\#\# RSA4096 key import

Addkey 44096 \# [10] gen RSA4096 key
Key2card 103 \# key[10] to Authentication key
Addkey 64096 \# [11] gen RSA4096 key
Key2card 112 \# key[11] to Encryption key
GPGAuth
GPGEnc
Addkey 44096 \# [12] gen RSA4096 key
Key2card 121 \# key[12] to Signature key GPGSign

Automated correctness test

Conclusion

- We design an algorithm that uses the most existing 2048-bit Montgomery modular multiplier to achieve a 4096-bit RSA cryptography mechanism without replacing any circuit component.
- We implement the 4096-bit RSA cryptography on an existing device, which is equipped with a 2048-bit Montgomery modular multiplier.
- Experiment results show that our method achieves the correct behavior of 4096-bit RSA cryptography, and makes it over 200x faster than the software-based solution.

Thanks!

