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Abstract—Time-Sensitive Networking (TSN) is the most
promising network technology for Industry 4.0. A series of
IEEE standards on TSN introduce deterministic transmission
into standard Ethernet. Under the current paradigm, TSN can
only schedule the deterministic transmission of time-triggered
critical traffic (TCT), neglecting the other type of traffic in
industrial cyber physical systems, i.e., event-triggered critical
traffic (ECT). So in this work, we propose a new paradigm for
TSN scheduling named E-TSN, which can provide deterministic
transmission for both TCT and ECT. The three techniques of
E-TSN, i.e., probabilistic stream, prioritized slot sharing, and
prudent reservation, enable the deterministic transmission of
ECT in TSN, and at the same time, protect TCT from the impacts
of ECT. We also develop and make public a TSN evaluation
toolkit to fill the gap in TSN study between algorithm design
and experimental validation. The experiments show that E-TSN
can reduce the latency and jitter of ECT by at least an order
of magnitude compared to state-of-the-art methods. By enabling
reliable and timely delivery of ECT in TSN for the first time,
E-TSN can broaden the application scope of TSN in industry.

Index Terms—Time-Sensitive Networking, Event-triggered
critical traffic, Traffic Scheduling, Cyber physical system.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is considered the most

important technology for future industrial communications

by industry leaders [1]–[3]. It empowers Industry 4.0 by

uniting diverse parts of an enterprise, including Information

Technology (IT) and Operation Technology (OT) sectors.

TSN is an OSI layer 2 technology, which provides de-

terministic communication on standard Ethernet. It ensures

that messages can travel through the network in a fixed and

predictable amount of time. The switches and devices in a TSN

network are time-synchronized. A global schedule controls

when data streams are generated and transmitted by devices

and switches. As a result, the switches can reserve resources

in advance to guarantee the deterministic transmission of

data streams. Such traffic that happens periodically at the

predetermined time is called time-triggered traffic in industrial

communication, such as a sensor reporting pressure every

10ms.

The other main type of traffic in industrial cyber physical

systems is event-triggered traffic. Event-triggered traffic is

Fig. 1: TBM and its operator cabin. The signal of the emer-

gency button is typical event-triggered critical traffic.

initiated by the happening of some event [4]. The fundamental

difference between time- and event-triggered traffic is that the

occurrence time of the latter is uncertain. Both time-triggered

critical traffic (TCT) and event-triggered critical traffic (ECT)

are common in reality. For example, Tunnel Boring Machine

(TBM) is advanced equipment for tunneling, such as subway

tunnels. Fig. 1 shows a TBM and its operator cabin. The

operator closely monitors the status of TBM and gives proper

commands to TBM by pushing the buttons in an emergency.

The operator’s commands and some monitored statuses, such

as cutterhead hazard, are typical ECT data. To ensure that the

operator’s commands are immediately and reliably executed

by the TBM, the operation panel is directly connected to

controlled devices electrically or mechanically. The inability

to deterministically transmit such ECT through networks pre-

vents the digitalization of TBM, e.g., automatically altering

operation parameters to increase cutter life. It also forces

the operator to stay in the tunnel with high temperature and

humidity, and most importantly, security issues. Besides TBM,

ECT is also seen frequently in manufacturing and automotive

systems [4]–[7].

Under the current paradigm, TSN can only support the

deterministic transmission of TCT. The scheduling problem of

TCT has been studied by much previous work [8]–[11]. How-

ever, there is a gap in the research of ECT in TSN. Enabling
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D2

SW1

s1

s2

Train Schedule

T.NO From To Arrival Departure
1 City A City D 09:27 14:05
2 City B City D 11:16 13:20
… … … … …

TSN Schedule

train1

train2

T.NO … Departure

… … …

T.NO … Departure

… … …

T.NO … Departure

… … …

S.NO Src Dst Receive Send
1 D1 D3 13us 226us
2 D2 D3 226us 402us
... … … … …

City B

City A

City DCity C

Cit A

S.NO … Send

… … …
S.NO … Send

… … …

S.NO … Send

… … …

Fig. 2: The schedule of a train system and the schedule of a

TSN network. Three devices (D) and one switch (SW ) form

a TSN network on the right. The train system on the left is

an analogy to the TSN network on the right. A TSN schedule

specifies the time when traffic passes each link in the network,

just like a train schedule specifies the time when trains pass

each railway.

deterministic transmission of ECT in TSN is challenging in

three ways: (1) Unpredictable traffic. The occurrence of

events is random and unpredictable. As a result, existing TSN

traffic scheduling based on predetermined timetables cannot

deal with ECT. It is critical to model the different possibilities

of ECT for scheduling. (2) Unguaranteed delay. If we reserve

fixed time-slots for ECT, like what previous work does for

TCT, the ECT needs to wait for the entire interval between

two allocated time-slots in the worst case. (3) Unprotected
encroachment. If we allow ECT to encroach upon TCT’s

resources without protection, the QoS of TCT will degrade

unboundedly.

In this paper, we propose a new paradigm for TSN schedul-

ing named E-TSN, which can provide deterministic trans-

mission for both TCT and ECT. Targeting the three chal-

lenges mentioned above, E-TSN has three novel techniques

that differentiate it from the traditional paradigm of TSN

scheduling: (1) Probabilistic stream. We propose probabilistic

stream to model the different possibilities of ECT, and we

allow a time-slot to be in “superposition state” when frames

of different possibilities are scheduled at the same time-slot.

(2) Prioritized slot sharing. We let ECT share the time-slots

of TCT, so ECT can be immediately transmitted whenever it

occurs. (3) Prudent reservation. We propose a link-level time-

slot reservation algorithm and model the worst-case latency

of TCT to ensure that its requirements are not violated.

We formalize the above techniques and the complete joint

scheduling algorithm as a Satisfiability Modulo Theories [12]

(SMT) problem, and we implement a TSN testbed on FPGA

to evaluate the performance of E-TSN. The contributions of

our work are summarized as follows:

• To the best of our knowledge, this is the first work to

discuss and solve the problem of ECT’s reliable and

timely delivery in TSN. E-TSN also complies with IEEE

Frames 

In
...…

Queues Gate Control List

t …
0 √
1 √
…

Output 

Port

Gates

Fig. 3: Output port model of TSN switch. The frames are

dispatched to different queues in the switch. Then the frames in

different queues are selected for transmission based on current

time and the Gate Control List. �means the queue can be

selected for transmission and × means the queue cannot be

selected.

TSN standards. Therefore it can operate in off-the-shelf

TSN switches.

• E-TSN is a new paradigm for TSN scheduling based on

three novel techniques: Probabilistic stream enables the

modeling of unpredictable ECT. Prioritized slot sharing

guarantees the low latency of ECT whenever it happens.

Prudent reservation protects TCT from the impacts of

ECT.

• We develop TSN platform Ziggo1 from scratch to eval-

uate the effectiveness of our method. The platform aims

to fill the gap in TSN study between algorithm design

and experimental validation. It supports major TSN stan-

dards including 802.1AS [13], Qav [14], Qbv [15], and

Qcc [16].

• We evaluate the performance of E-TSN in both testbeds

and simulations. The results show that E-TSN enables

ECT in TSN by providing an order of magnitude lower

latency (423μs over three hops) and jitter (39μs standard

deviation) compared to state-of-the-art methods.

The remaining of the paper is organized as follows. First,

we discuss the preliminaries of TSN in Sec. II. Then we

present the overview and three techniques of E-TSN in Sec. III.

The complete formalization of the scheduling problem is in

Sec. IV. We introduce the implementation of the testbed in

Sec. V and evaluate the performance of E-TSN in Sec. VI. At

last, we discuss the related work in Sec. VII and conclude the

paper in Sec. VIII.

II. PRELIMINARY

In this section, we introduce the preliminaries of TSN and

its scheduling. In Fig. 2, we use a train system as an analogy

to explain what TSN scheduling does. On the left, a simple

train system has four cities connected by three railways. Two

trains travel through this railway network. One train travels

from City A to D, and the other travels from City B to D.

They both go through the railway between City C and D. To

avoid conflicts, the train system manager should schedule the

arrival and departure time at stations properly. This is similar

to what TSN does to data streams. On the right of Fig. 2, three

1TSN platform Ziggo: http://tns.thss.tsinghua.edu.cn/ziggo/
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D1-SW1

D2-SW1

SW1-D3

૚࢙૚ࢌ ૚࢙૛ࢌ ૚࢙૜ࢌ

૚࢙૚ࢌ ૚࢙૛ࢌ ૚࢙૜ࢌ 5ܶ

૛࢙૚ࢌ
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t 1 2 3 ௦మݍ௦భݍ4 √ √ √
√

GCL

t

t

t

4ܶ3ܶ2ܶܶ
Fig. 4: An example schedule for the scheduling problem in

Sec. II. fsi
j is the jth frame of si sent in a period. T is the

time to transmit one frame on a link. GCL can be derived

from the schedule. qsi is the queue for si.

devices and one switch form a simple TSN network. Since at

one time, only one stream can transmit on a physical link.

The sending and receiving time of streams at switches also

need to be scheduled in advance to avoid conflicts and ensure

determinism.

The ability to transmit frames according to predetermined

timetable comes from standard 802.1Qbv [15]. As shown in

Fig. 3, an output port of an 802.1Q [17] switch can have

at most eight queues for frames of different priorities. The

amendment Qbv further defines a gate to each queue that

controls whether the frames in it can be transmitted. The status

of the gate, i.e., open or close, is predetermined in a timetable

called Gate Control List (GCL). The entries in a GCL specify

the status of each queue’s gate in each time-slot in a cycle.

Therefore, when some frames are scheduled to send in a time-

slot, the gate of these frames’ queue will be set to open, and

the gates of the other queues will be set to close.

At last, we explain in more detail how TSN scheduling

works from the link-time perspective as shown in Fig. 4.

Assume stream s1 and s2 on the right of Fig. 2 are two TCT

streams. s1 is from D1 to D3 and s2 is from D2 to D3. s1
sends three frames in one cycle and s2 sends one. The cycle

time is both 5T , where T is the time to transmit one frame.

And the maximum allowed latency of two streams is also 5T .

Fig. 4 shows a schedule of these two streams on three links.

From t=3T to 4T , the frame of s2 is transmitted from D2 to

SW1. Then from t=4T to 5T , the frame is transmitted from

SW1 to D3. Thus the latency of s2 is 2T , under its maximum

allowed latency. Here we use a simple example to explain how

scheduling works. In a large network, the scheduling problem

can be rather complex.

III. DESIGN OF E-TSN

A. Overview

Fig. 5 shows the overview of E-TSN and its position in the

framework of TSN. 802.1Qcc [16] defines four main compo-

nents in a TSN network, including end devices, switches, Cen-

tralized User Configuration (CUC), and Centralized Network

Configuration (CNC). CUC discovers the end devices in the

network, retrieves their stream requirements, and configures

their TSN features such as the sending time of data. CNC is

Centralized Network Configuration (CNC)

ECT Device TCT DeviceSwitch Switch

Centralized User Configuration (CUC)

Probabilistic
Streams III-B

Prioritized Slot 
Sharing III-C

Prudent 
Reservation III-D

SMT Formulation IV
Time Cons. Frame Overlap Cons.

Priority Cons. Adjacent Link Cons.

E-TSN

Fig. 5: Overview of E-TSN and its position in the framework

of TSN.

aware of the physical topology of the network and receives

stream requirements from CUC. E-TSN works inside CNC

to calculate a schedule for the TSN network. Then CNC

distributes this schedule to switches and end devices. Inside

E-TSN, we propose three novel techniques, i.e., probabilistic

stream, prioritized slot sharing, and prudent reservation. These

techniques and the complete scheduling problem are formal-

ized as an SMT problem. The formalization is divided into four

types of constraints, namely time constraints, frame overlap

constraints, priority constraints, and adjacent link constraints.

E-TSN is fully compatible with current TSN standards

and frameworks. ECT can be described by the user/network

configuration information defined in Qcc 46.2. The three novel

techniques to enable ECT in TSN can be implemented by

configuring the GCL defined in Qbv.

In the rest of this section, we will present the three tech-

niques of E-TSN.

B. Probabilistic Stream

The occurrence time of TCT is deterministic, which is

predetermined by the scheduling algorithm. However, the

occurrence of ECT is stochastic. It may arrive at any time

when the system runs. This is their fundamental difference

and makes it impossible for previous scheduling algorithms to

model ECT.

In E-TSN, we propose the concept of probabilistic stream

to model the different possibilities of ECT. We explain the

idea of probabilistic stream using the network example on

the right of Fig. 2. Now we assume that s2 becomes an

ECT stream, instead of TCT. The minimum time between

consecutive events of s2 is 5T . This is a common property of

ECT [5]. The period and maximum allowed latency of s1 are

5T . The maximum allowed latency of s2 is also 5T . s1 sends

three frames in one period, and s2 sends one frame at a time.

Stream s2 can start to transmit at any time at D2. We create

N probabilistic streams, ps21, ps22, ..., ps2N to represent the

different possibilities of stream s2. N is a parameter specified

by the user. ps2i is a time-triggered periodic stream that starts
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t
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Fig. 6: An example schedule for the scheduling problem in

Sec. III-B. fs1
j represents the jth frame of s1. ps2i represents

the probabilistic streams of s2. fps2i
j represents the jth frame

of ps2i. T is the time to transmit one frame on a link.

to transmit at (i − 1)(5T/N). It has the same source and

destination as s2. Its period is set to 5T , i.e., the minimum

interevent time of the stream. If s2 happens between psi−1 and

psi, it can be delayed for at most 5T/N to become psi. So its

maximum allowed latency is set to 5T -5T/N . Therefore, the

set of probabilistic streams can represent all the possibilities of

the ECT stream. If a schedule satisfies the latency requirements

of all the probabilistic streams, it will satisfy the requirements

of the ECT no matter when it happens.

In traditional TSN scheduling, two frames transmitted on the

same link cannot overlap in time since a link can only transmit

one frame at a time. For example, in Fig. 4, scheduling

fs2
1 and fs1

3 to transmit at the same time on link SW1-D3

is invalid. This constraint is rooted in the determinism of

TCT. However, this is not true after we introduce probabilistic

streams. At one time, at most one of ps21, ps22, ..., ps2N can

actually happen. So we rethink this fundamental constraint in

our scheduling algorithm. If two frames belong to different

probabilistic streams derived from the same ECT stream, we

allow them to overlap in time.

Fig. 6 illustrates an example schedule for TCT s1 and ECT

s2. We use five probabilistic streams for s2: ps21, ps22, ...,

ps25. A time slot on link SW1-D3 between fs1
2 and fs1

3 is

reserved for 3 overlapped frames: fps21
1 , fps22

1 and fps23
1 . It

ensures that the latency requirements of ps21, ps22 and ps23
are fulfilled. fps24

1 and fps25
1 are scheduled at the same time

slot after fs1
3 . This satisfies the requirements of ps24 and ps25.

As a result, all possibilities of s2 will meet their transmission

deadline. The above two time-slots are in “superposition state”.

The first one may transmit fps21
1 or fps22

1 or fps23
1 . There are

multiple possibilities during scheduling, but only one of them

can happen when the network is in operation.

C. Prioritized Slot Sharing

Probabilistic stream enables us to model ECT in the

scheduling algorithm. However, reserving dedicated time-slots

for ECT is inefficient. For example, Fig. 7a shows a schedule

for a link. In this schedule, a slot is reserved exclusively for

ECT every 6T period, and the other five slots are reserved

for a TCT stream. In the worst case, when the event-triggered

frame (fe
1 ) appears just after its reserved slot, it has to wait for

t

Worst case: If comes at t=0. It has to wait for 5T.

Slot for TCT Slot for ECT

(a) Reserving dedicated time-slots.

t

Case #1: If comes at t=0.
Prioritized Shared Slot

t

Case #2: If comes at t=3T.
Prioritized Shared Slot

(b) Prioritized shared time-slots.

Fig. 7: Example schedule on a link with five TCT frames (f t
i )

and one ECT frame (fe
1 ).

an entire period of 5T to be transmitted. This is unacceptable

for critical traffic that needs low latency, and it also increases

the jitter of ECT.

To tackle this problem, we propose prioritized slot sharing.

ECT can transmit with a higher priority in the time-slots

reserved for TCT. As shown in Fig. 7b, 5+1 time-slots are

reserved for TCT. These time-slots are shared with ECT. So

whenever fe
1 comes, it can be transmitted immediately. The

remaining frames of TCT are delayed accordingly. To ensure

that the delayed frames are also transmitted, we need to reserve

some extra time-slots for TCT, such as the +1 time-slot in

this example. As a result, with prioritized slot sharing, we can

ensure the fast transmission of ECT whenever it happens. This

significantly reduces the network latency and jitter.

D. Prudent Reservation

In prioritized slot sharing, we reserve extra shared time-slots

rather than dedicated time-slots for ECT. To protect TCT from

the encroachment of ECT on shared time-slots, we need to

reserve extra time-slots for TCT and ensure that TCT’s worst-

case latency will not exceed the limit. Previous scheduling

algorithms take it as a fundamental assumption that the length

(number of frames) of the stream is constant along its path.

However, reserving extra time-slots at the stream level can

cause resource waste. Taking the network in Fig. 2 as an

example again, assume that TCT stream s1 shares its time-

slots with ECT stream s2. Reserving extra time-slots along the

entire path of s1 is unnecessary since s1 and s2 only overlap

on link SW1-D3. To minimize the extra reserved time-slots,
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SWa-SWb

SWb-SWc

Latest possible slots that  transmit the same frame
t

t

Fig. 8: Schedule the time-slots on SWb-SWc after the latest

time-slot on SWa-SWb that may transmit the same frame.

we design a prudent reservation algorithm at link level. The

algorithm is shown in Alg. 1. The inputs are the set of shared

TCT streams and the set of ECT streams, and the outputs are

the expanded TCT streams. For every link along a stream’s

path, we find all the ECT streams that pass this link and

calculate the number of needed extra time-slots based on the

length (se.l, st.l) and minimum interevent time (se.T ) of the

streams. T is the time to transmit one frame.

Algorithm 1: PRUDENTSLOTRESERVATION

Input: Set of Shared TCT streams S1

Set of ECT streams S2

Output: Expanded Sexp
1 with extra frames added

forall st of S1 do
forall link of st.path do

forall se of S2 do
if se passes link then

n ← se.l × �st.l × T/se.T �;

Reserve n extra frames on link for st;

return S1

As a result of prudent slot reservation, the number of

scheduled frames on adjacent links can be different. A frame’s

reserved time-slot on the downstream link should be after its

time-slot on the upstream link. Due to the uncertainties of

ECT, the correspondence of time-slots on adjacent links is

indefinite. To ensure that a TCT frame won’t miss its time-

slot, we need to schedule the time-slots on the downstream

link after the latest time-slot on the upstream link that may

transmit the same frame. An example is shown in Fig. 8, the

stream overlaps with an ECT stream on link SWa-SWb, but

not on the downstream link SWb-SWc. So the stream reserves

one more time-slot on link SWa-SWb. Then the time-slot of

fi on the downstream link should be scheduled after fi+1 on

the upstream link, instead of fi. After applying this rule along

the entire path of the stream, we can model its worst-case

latency as the time between the receiving on the last link and

the sending on the first link.

IV. SMT FORMULATION

A. Network and Traffic Notation

We abstract the network topology as a directed graph

G(V,E), where graph vertices (V ) represent switches and

devices, and graph edges (E ⊆ V × V ) represent the links

between them. If two network nodes va and vb are connected,

two edges, 〈va, vb〉 and 〈vb, va〉, will be added into E to

represent the full-duplex link between them. An edge has three

attributes:

(〈va, vb〉 .b, 〈va, vb〉 .d, 〈va, vb〉 .tu)
b is the bandwidth of the link. d is the propagation delay.

tu is the smallest time unit for the operations on the link. It

determines the time granularity of the scheduling.

Next, we introduce the notation of streams. Without loss of

generality, we only consider unicast streams to simplify the

descriptions [8], [18]. A stream s can be characterized by 8

attributes:

(s.path, s.e2e, s.p, s.l, s.T, s.type, s.share, s.ot)

s.path=[〈v1, v2〉, 〈v2, v3〉..., 〈vn−1, vn〉] is the path of the

stream through the networks. s.e2e, s.p, and s.l denote the

maximum allowed end-to-end latency, priority, and length

in bytes of the stream respectively. For TCT streams, s.T
is the period. For probabilistic streams derived from ECT

streams, s.T is the minimum interevent time. s.type is the

type of the stream: Deterministic(Det) for TCT streams or

Probabilistic(Prob) for probabilistic streams. s.share is only

valid for TCT streams and indicates whether s shares its time-

slots with ECT. s.ot is only valid for probabilistic streams,

which is its occurrence time, i.e., when it starts to transmit at

the source device. We denote the set of streams to schedule

as S=〈s1, s2, s3, ..., sN 〉, including both TCT streams and the

probabilistic streams derived from ECT.

At last, we introduce the notation of frames. We denote the

set of frames on link 〈va, vb〉 that belong to stream si as

Fsi,〈va,vb〉 =
[
f
si,〈va,vb〉
1 , f

si,〈va,vb〉
2 , ..., f

si,〈va,vb〉
last

]

Fsi,〈va,vb〉 includes the frames added by Alg. 1. Each frame

has 3 attributes:〈
f
si,〈va,vb〉
j .φ, f

si,〈va,vb〉
j .T, f

si,〈va,vb〉
j .L

〉

φ is the start time of the scheduled time slot for the frame.

T is the period or minimum interevent time. L is the time to

transmit this frame on link 〈va, vb〉. All of them are in units

of 〈va, vb〉 .tu.

B. Formulation

Based on the notation defined above, we present the com-

plete SMT formulation of our scheduling algorithm, including

how we implement the three techniques in Sec. III.

1) Time Constraints: First of all, the scheduled time for

frames cannot have negative values, and the transmission of

the frames should fit in their periods. Thus we have:

∀si ∈ S, ∀ 〈va, vb〉 ∈ si.path, ∀fsi,〈va,vb〉
j ∈ Fsi,〈va,vb〉 :(

f
si,〈va,vb〉
j .φ � 0

)
∧

(
f
si,〈va,vb〉
j .φ+ f

si,〈va,vb〉
j .L � f

si,〈va,vb〉
j .T

) (1)
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Specially, for a probabilistic stream, the scheduled φ for its

first frame on the first link should be after its occurrence time:

∀si ∈ S if si.type = Prob :

f
si,si.path[0]
1 .φ � si.ot

(2)

where “if” means adding constraints to SMT conditionally.

Secondly, the frames of the same stream should be sent in

sequence through a link:

∀si ∈ S, ∀ 〈va, vb〉 ∈ si.path, ∀fsi,〈va,vb〉
j ∈ Fsi,〈va,vb〉 :

if f
si,〈va,vb〉
j is not f

si,〈va,vb〉
last :

f
si,〈va,vb〉
j .φ+ f

si,〈va,vb〉
j .L � f

si,〈va,vb〉
j+1 .φ

(3)

Additionally, the streams’ end-to-end latency requirements

should be satisfied:

∀si ∈ S :

if si.type = Det :

f
si,si.path[last]
last .φ− f

si,si.path[0]
1 .φ � si.e2e

else :

f
si,si.path[last]
last .φ− si.ot � si.e2e

(4)

Looping over all the probabilistic streams of an ECT stream,

(4) ensures that no matter when the ECT stream occurs, the

TSN network can deliver its frames before the deadline.

2) Frame Overlap Constraints: A link can only transmit

one frame at a time, so when scheduling TCT solely, the

scheduled time-slots for two frames cannot overlap. However,

in our algorithm, there are two conditions when the time-

slots of frames can overlap: (1) when two frames belong to

different probabilistic streams derived from the same ECT

stream, since only one of them will actually exist as we

discussed in Sec. III-B. (2) when one is a probabilistic stream,

and the other is a TCT stream that shares time-slots, since the

TCT stream’s reserved time-slots have already been expanded

in Alg. 1. These can be formalized as follows:

∀ 〈va, vb〉 ∈ E :

∀Fsi,〈va,vb〉, Fsj ,〈va,vb〉, i �= j :

if si and sj can not overlap :

∀fsi,〈va,vb〉
k ∈ Fsi,〈va,vb〉, f

sj ,〈va,vb〉
l ∈ Fsj ,〈va,vb〉 :

Thyper ← lcm (si.T, sj .T )

∀x ∈ {0, 1, ..., Thyper/si.T − 1} :

∀y ∈ {0, 1, ..., Thyper/sj .T − 1} :

(f
si,〈va,vb〉
k .φ+ x× f

si,〈va,vb〉
k .T �

f
sj ,〈va,vb〉
l .φ+ y × f

sj ,〈va,vb〉
l .T + f

sj ,〈va,vb〉
l .L)∨

(f
sj ,〈va,vb〉
l .φ+ y × f

sj ,〈va,vb〉
l .T �

f
si,〈va,vb〉
k .φ+ x× f

si,〈va,vb〉
k .T + f

si,〈va,vb〉
k .L)

(5)

where lcm(si.T, sj .T ) calculates the least common multiple

of si.T and sj .T , i.e., the hyperperiod of the two streams.

3) Priority Constraints: The priority determines in which

queue the frames wait to be transmitted. This enables the

spatial isolation of streams in switches. A TSN network can

have at most eight priorities. We reserve one of them for ECT

(EP ), then divide the remaining priorities into two groups.

One group, from SH PL to SH PH , is for TCT that shares

time-slots. The other group, from NSH PL to NSH PH ,

is for TCT that does not share time-slots:

∀si ∈ S :

(si.type = Prob ∧ si.p = EP )∨
(si.type = Det ∧ si.share = False

∧ si.p � NSH PL ∧ si.p � NSH PH)∨
(si.type = Det ∧ si.share = True

∧ si.p � SH PL ∧ si.p � SH PH)

(6)

ECT is not always prioritised w.r.t. TCT. TCT streams that

have tight latency bounds can be assigned a priority in the

second group, i.e., from NSH PL to NSH PH , so they

won’t be affected by ECT.

The attribute si.share can be specified manually according

to the importance of the streams. It can also be a variable, thus

let the algorithm determine if si can share time-slots based on

the overall scheduling requirements.

4) Adjacent Link Constraints: In Sec. III-D, we have dis-

cussed that the time-slots on the downstream link should be

scheduled after the latest slot on the upstream link that may

transmit the same frame. This can be formalized as:

∀si ∈ S, ∀〈va, vb〉, 〈vb, vc〉 ∈ si.path :

o ← Max(
∣∣Fsi,〈va,vb〉

∣− ∣
Fsi,〈vb,vc〉

∣
, 0)

∀fsi,〈vb,vc〉
j ∈ Fsi,〈vb,vc〉 :

f
si,〈vb,vc〉
j .phi× 〈vb, vc〉 .tu− 〈va, vb〉 .d �
(f

si,〈va,vb〉
j+o .phi+ f

si,〈va,vb〉
j+o .L)× 〈va, vb〉 .tu

(7)

(7) also guarantees that (4) models the worst-case latency of

the TCT streams.

The constraints in this section formulate the joint scheduling

of ECT and TCT as an SMT problem. It can then be solved

by SMT solver like z3 [19].

V. TESTBED IMPLEMENTATION

To support the evaluation of E-TSN and further TSN studies,

we develop TSN platform Ziggo from scratch, which includes

both TSN switches and evaluation toolkits. Ziggo complies

with IEEE TSN standards and can help fill the gap between

algorithm design and experimental validation in TSN study.

Both switches and toolkits are implemented on Xilinx ZYNQ-

7000 SoC [20] (board model AX7021 [21]). ZYNQ-7000

SoC integrates the software programmability of an ARM

processor (a.k.a PS, processor system) with the hardware

programmability of an FPGA (a.k.a. PL, programmable logic).

The overview of TSN switches and evaluation tools’ design

is illustrated in Fig. 9. The TSN switches and evaluation

toolkits support 802.1Qbv [15], 802.1AS [13], as well as

802.1Qcc [16]. The timestamps are obtained in hardware to
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Fig. 9: Overview of TSN switch and evaluation tools’ design.

Fig. 10: TSN Testbed with two switches and four devices

achieve 10ns accuracy. The frames of TSN configuration (Qcc)

and time synchronization (802.1AS) are forwarded from PL

to PS through Direct Memory Access (DMA). Other frames

are transmitted by hardware logic without CPU processing.

Modules like gate control list, switch fabric, and transmission

queue selection are also implemented in pure hardware. The

Precision Time Protocol (802.1AS), NETCONF protocol, and

YANG model (Qcc) are implemented in software, and they

access hardware components via DMA or memory-mapped

registers.

Fig. 10 shows our testbed with two switches and four

devices (evaluation toolkit). We will compare the performance

of E-TSN and other methods in this testbed in Sec. VI-B.

VI. EVALUATION

We compare the performance of E-TSN and other methods

in a TSN testbed and a TSN simulation tool. The experiments

are done with different network load and traffic settings. We

measure the latency and jitter of ECT, as well as its impact

on TCT. Our experiments reveal the following key findings.

• Both in testbeds and simulations, E-TSN achieves at least

one order of magnitude lower latency and jitter for ECT

streams compared to other methods. E-TSN can provide

515us worst-case latency in a 3-hops TSN testbed.

• The performance of E-TSN is robust in various settings,

including different network loads and different payload

lengths.

• E-TSN allows ECT streams to share the time-slots of

TCT streams. E-TSN is aware of this impact and can

always guarantee that the network requirements of TCT

streams are satisfied even in the worst case.

• When there are multiple ECT streams, E-TSN can pro-

vide an order of magnitude lower latency and jitter to all

the streams.

In the following, we first introduce the evaluation methodology

in Sec. VI-A. Then we report the results in the testbed in

Sec. VI-B. At last, we analyze the performance of E-TSN

theoretically in Sec. VI-C.

A. Methodology

1) Evaluation Setting: We compare E-TSN with other

methods in both a TSN testbed and a TSN simulation platform.

The simulation is to validate the performance of E-TSN in a

larger scale network and its compatibility with TSN standards.

The testbed has been introduced in Sec. V. The simulator we

use is NeSTiNg [22], which is based on OMNeT++ [23]. It is

also used by IEEE 802.1 Working Group for the development

of new standards [24]. The network topology, traffic specifi-

cations, and evaluation results of testbeds and simulations will

be reported in Sec. VI-B and Sec. VI-C.

2) Comparing Methods: Since there is no previous work on

enabling ECT in TSN, we compare E-TSN with two methods

that are based on state-of-the-art traditional TSN scheduling

algorithms:

• PERIOD: An intuitive idea is to treat ECT as TCT,

then solve the scheduling problem using TCT scheduling

algorithm such as [8]. We allow PERIOD to schedule

ECT with a period smaller than its minimum interevent

time to achieve lower latency. We make PERIOD use as

many time-slots as E-TSN if not otherwise stated.

• AVB: Another solution is to transmit ECT as Audio-

Video-Bridge traffic defined in 802.1Qav [14]. This

means that ECT can only transmit in unallocated time-

slots but with a higher priority than background traffic.

3) Evaluation Metrics: We measure the latency of both

ECT and TCT. The latency is defined as the time between

the receiving of the last frame and the sending of the first

frame. We compare the average latency, worst-case latency,

and standard deviation of latency (jitter) of different methods.

B. Testbed Results

The network topology of the testbed is shown in Fig. 10, and

the link speed is 100Mbps. The network traffic is randomly

generated in accordance with IEC/IEEE 60802 [25], which is

the TSN profile for industrial automation. We generate ten pe-

riodic TCT streams. The source and destination are randomly

chosen from the four devices. The period is randomly chosen

from the set {4ms, 8ms, 16ms}. The payload length of the

streams is adjusted to form different network load status. We

send an ECT stream from Device 2 to Device 4 in Fig. 10, and

assume that it can share the time-slots of all the TCT streams.

The length of the message is one Ethernet MTU (Maximum

Transmission Unit). The minimum interevent time is 16ms.

697 



0 2 4 6 8
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

E-TSN
PERIOD
AVB

(a) 25% Network Load

0 2 4 6 8
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

E-TSN
PERIOD
AVB

(b) 50% Network Load

0 5 10 15 20
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

E-TSN
PERIOD
AVB

(c) 75% Network Load

Fig. 11: CDFs of ECT streams’ latency using different scheduling algorithms and under different network loads. The network

load means how much bandwidth is consumed by TCT in the network.

1 2 3 4 5 6 7 8
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

E-TSN
PERIOD
PERIOD_double
PERIOD_quad
PERIOD_octa

Fig. 12: CDFs of ECT streams’ latency. PERIOD, PE-
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Fig. 13: Simulation network topology with four switches and

twelve devices

The occurrence time of this stream is stochastic, in line with

uniform distribution.

In the first experiment, we measure the latency of ECT

under different methods’ schedules, and the results are shown

in Fig. 11. The network load means how much bandwidth

is consumed by TCT in the network. The CDFs show that

E-TSN can provide much lower latency and jitter to ECT.

With 75% network load, the average latency of E-TSN is

423μs, which is 88% lower than that of PERIOD and 97%

lower than that of AVB. The worst-case latency of E-TSN

is 515us, which is more than an order of magnitude lower

than that of PERIOD and AVB. We measure jitter using the

standard deviation of latency. E-TSN’s jitter is 39μs, which

is two orders of magnitude lower than that of the other two

methods. E-TSN allows ECT to transmit immediately when

they occur. PERIOD allocates dedicated time-slots for ECT.

Since the message can arrive at any time, PERIOD may need

the message to wait for an entire period to transmit in the

worst case.

Another observation is that under different network loads,

the performance of E-TSN and PERIOD is stable. This is be-

cause that E-TSN allows ECT to share the time-slots of TCT,

and the exclusive time-slots in PERIOD are not influenced by

the other traffic. However, the performance of AVB decreases

rapidly with increasing network loads. From 25% network load

to 75%, the average latency of AVB rises fivefold. This is

because that AVB only allows ECT to transmit in unallocated

time-slots. And the unallocated time slots may not be aligned

between switches. So when the bandwidth allocated to TCT

increases, AVB’s performance decreases rapidly.

In the second experiment, we compare the resource cost of

E-TSN compared to PERIOD. We allow PERIOD to reserve

two to eight times as many time-slots as E-TSN for ECT.

The results are shown in Fig. 12. Even with eight-times time-

slots, the worst-case latency of PERIOD is still three times

that of E-TSN. In this case, PERIOD consumes over 90%

network bandwidth solely to transmit the ECT stream, which

is impractical.

C. Simulation Results

The network topology for simulation is shown in Fig. 13,

and the link speed is also 100Mbps. It consists of 4 switches

and 12 devices. Forty TCT streams are generated based on

IEC/IEEE 60802. The period is chosen from {5ms, 10ms,

20ms}, and the payload is adjusted to form different network

loads. An ECT stream is sent from Device 1 to Device 12.

Its minimum interevent time is 10ms. Its occurrence time is

in line with uniform distribution. We assume that it can share

the time-slots of all the TCT streams, except in Sec. VI-C2.

1) Latency and jitter of ECT streams: Like in Sec. VI-B,

we first measure the latency of ECT with different network

loads. We also change the length of the ECT stream from one

MTU to five MTU to see its impact on the latency and jitter. As

shown in Fig. 14(a)(b)(c), the latency of E-TSN is consistently

the lowest under different settings. It is not affected by the

network load or the message length. On average, the latency

of E-TSN is 83.8% lower than PERIOD, and 83.1% lower
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Fig. 14: (a)(b)(c) show the latency of ECT with different network loads and message length. (d)(e)(f) show the respective jitter.

Jitter is calculated as the standard deviation of the latency.

st1 st2 st3 st4 st5 st6
Stream

0

1

2

3

4

5

A
vg

. L
at

en
cy

 (
m

s) 1st run: No ECT sent
Max Allowed Latency

2nd run: Randomly send ECT

Fig. 15: st4, st5, and st6 share their time-slots with ECT, while

st1, st2, and st3 do not. In the first run, we do not transmit ECT,

and in the second run, we generate ECT randomly. The error

bar is from the minimum latency to the maximum latency.

than AVB; the worst-case latency of E-TSN is 88.5% lower

than PERIOD, and 91.7% lower than AVB; and the jitter of

E-TSN is 94.3% lower than PERIOD, and 97.0% lower than

AVB;

When the network load increases from 25% to 75%, the

performance of E-TSN and PERIOD is not affected, while

the performance of AVB degrades rapidly, similar to what we

have observed in the testbed (Sec. VI-B). On the other hand,

when the length of the ECT message increases from 1 MTU

to 5 MTU, the latency of E-TSN and PERIOD only increases

slightly, while the latency of AVB increases greatly. This is

because E-TSN and PERIOD explicitly reserve extra shared

or dedicated time-slots that are enough to transmit the entire

ECT message.

2) Impacts on TCT streams: E-TSN allows ECT to share

the time-slots of TCT. This may increase the latency and jitter

of TCT streams. To study the impact of ECT on TCT in E-

TSN, we measure the latency of TCT streams with or without

ECT. We assume that ten out of forty TCT streams are more

important than ECT, and they do not share time-slots. The

results are shown in Fig. 15. The latency of three shared

TCT streams and three non-shared streams are presented. The

results for other streams are similar.

The results show that E-TSN can protect TCT from the

encroachment of ECT and guarantee that the requirements of

TCT are always satisfied even in the worst case. For streams

that do not share time-slots, i.e., st1, st2, and st3, the presence

of ECT makes no difference. For streams that share time-

slots, i.e., st4, st5, and st6, although their latency and jitter

increase when there is randomly generated ECT, the worst-

case latency is always below the maximum allowed latency of

the respective streams.

3) Multiple ECT streams: We also measure the perfor-

mance of different methods when there are multiple ECT

streams in the network. The network load is set to 50%.

Besides the stream from Device 1 to Device 12 (se1), we create

three other ECT streams, i.e., se2, se3, and se4. The source and

destination devices are chosen randomly from the 12 devices.

All of the four streams send traffic at a random time in line

with uniform distribution.

The latency and jitter of the four streams using different

methods are shown in Fig. 16. E-TSN achieves the lowest

latency and jitter for all the streams. On average, E-TSN can

reduce the latency by 85.4% and the jitter by 97.0% compared

to AVB, and reduce the latency by 78.7% and the jitter by

699 



se1 se2 se3 se4
Stream

0.0

2.5

5.0

7.5

10.0

12.5
A

vg
. L

at
en

cy
 (

m
s) E-TSN PERIOD AVB

Fig. 16: Latency and jitter of four ECT streams: se1, se2, se3, and

se4. The length of the error bar is double standard deviation of

the latency.

93.7% compared to PERIOD.

VII. RELATED WORK

A. Evolution of TSN

The IEEE TSN Task Group (TG) was evolved from the

former Audio Video Bridging (AVB) TG. AVB concentrates on

the QoS of audio/video traffic inside an Ethernet network [26].

In 2012, AVG TG was renamed to TSN TG, and the focus

of the group shifted from audio/video services to industrial

real-time communications. Numerous techniques have been

introduced to realize deterministic transmission on standard

Ethernet, such as Precision Time Protocol [13], Time Aware

Shaper [15], and Cyclic Queuing and Forwarding [27]. Other

techniques like SDN [28], OPC UA [2], and seamless redun-

dancy [29] are also explored to automate the configuration

process and provide extra reliability. The above techniques

and corresponding scheduling algorithms have enabled the

deterministic transmission of TCT in TSN. However, they do

not support ECT, which limits the scope of application of

TSN in industry. In this work, we propose a new scheduling

paradigm for TSN, and for the first time, discuss and solve

the problem of enabling ECT in TSN.

Next, we discuss previous work of offline and online

scheduling for TCT in TSN.

B. Offline TSN Scheduling

This category of previous work focuses on the offline

scheduling prior to the operation of the network. So the

scheduling algorithm does not need to consider the dynamic

change of the network in operation. IEEE 802.1Qbv was

published in 2015, and since then, many researchers have

studied the scheduling problem of it. Craciunas et al. first use

Satisfiability Modulo Theories (SMT) to model the 802.1Qbv

scheduling problem [8], based on their prior studies on Time-

Triggered Ethernet (TTE) [30]–[32]. They also discussed the

pros and cons of flow isolation and frame isolation strategies.

Later, they formalize the scheduling problem as a system of

constraints expressed using first-order theory of arrays [9],

which is then solved using SMT solvers. Besides SMT, another

trend is to formulate the scheduling problem as Integer Linear

Programs (ILP) [33]–[35]. Nayak et al. show that the well-

known No-wait Job-shop Scheduling Problem (NW-JSP) can

be adapted to calculate TSN schedules [36]. Pop et al. and

Steiner et al. also take the scheduling of mixed-criticality

traffic into consideration [11]. Besides sole traffic scheduling,

[35] takes traffic routing into consideration and proposes an

ILP-based joint routing and scheduling algorithm. However,

all the above work focuses on the scheduling of TCT without

considering the existence of ECT. In this work, we solve

the scheduling problem of ECT without violating TCT’s

requirements.

C. Online TSN Scheduling

The network topology and data transmission requirements

are not always static, since network links may fail and the

upper applications may change. Different from offline schedul-

ing, online scheduling focuses on the speed of the scheduling

algorithm [37]–[39]. So the network can accommodate to the

dynamic change of networks and streams by updating the

schedule in real-time. Yan et al. propose a novel algorithm

based on Tabu search [40] to schedule TCT flows in CQF-

based TSN, which improves the mapped flow number by

10x [10]. Nayak et al. also design a Tabu-based heuristic

algorithm, which split the scheduling into a time-tabling prob-

lem and a sequencing problem [36]. Besides the widely used

Tabu heuristic, Pop et al. design an algorithm based on Greedy

Randomized Adaptive Search Procedure (GRASP) [11], [41].

And Steiner proposes an incremental backtracking algorithm

in [18] to accelerate the solving of SMT. Recently, with the

huge success of artificial intelligence, some prior work studies

the application of deep learning to TSN scheduling problem.

Zhong et al. propose a Deep Reinforcement Learning based

scheduling method for time-triggered traffic, which shows bet-

ter performance than traditional heuristic-based methods [42].

Previous work designs heuristic- or DNN-based algorithms for

the scheduling of TCT in TSN. Some of these techniques can

be directly used in our algorithm like [18]. Designing online

scheduling algorithm for ECT is an interesting direction of our

future work.

VIII. CONCLUSION

With the rise of Industry 4.0 and the Industrial Internet,

TSN is gaining more and more attention. In this paper, we

propose a new paradigm for TSN scheduling named E-TSN.

It enables the reliable and timely transmission of ECT in

TSN for the first time. We propose three novel techniques to

model ECT’s different possibilities, guarantee low latency no

matter when ECT occurs, and ensure the fulfillment of TCT’s

network requirements. We also develop and make public a

TSN evaluation toolkit on FPGA, which supports major TSN

standards and measures network latency at 10ns accuracy.

The experiments show that E-TSN achieves at least an order

of magnitude lower latency and jitter for ECT compared to

state-of-the-art methods. The ability to support both TCT and

ECT can promote the application of TSN in more scenarios

of manufacturing and automation in the future.
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[11] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (tsn)
for mixed-criticality industrial applications,” in 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), 2018,
pp. 1–4.

[12] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[13] Timing and Synchronization for Time-Sensitive Applications, IEEE Std.
802.1AS, 2020.

[14] Forwarding and Queuing Enhancements for Time-Sensitive Streams,
IEEE Std. 802.1Qav, 2009.

[15] Enhancements for Scheduled Traffic, IEEE Std. 802.1Qbv, 2015.
[16] Stream Reservation Protocols (SRP) Enhancements and Performance

Improvements, IEEE Std. 802.1Qcc, 2018.
[17] Bridges and Bridged Networks, IEEE Std. 802.1Q, 2018.
[18] W. Steiner, “An evaluation of smt-based schedule synthesis for time-

triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium, 2010, pp. 375–384.

[19] Z3Prover. (2021, Jul.) Github repository of z3prover. [Online].
Available: https://github.com/Z3Prover/z3

[20] Xilinx. (2021, Jul.) Socs with hardware and software programma-
bility. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html

[21] Alinx. (2021, Jul.) Alinx xilinx zynq fpga development board. [Online].
Available: http://alinx.com/index.php/default/content/96.html

[22] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
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