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Smart wearable devices have become more and more popular in our daily life due to their unique power 
of “wearing-while-using.” However, requirements of light weight and compact size lead to limited on-
device resources in most wearable products, which hamper the development of wearable technology. 
Edge computing provides an opportunity for wearable devices to access more resources without violating 
the constraints on weight and size.
In this article, we first investigate the drawbacks of wearable devices and explore the potential 
of addressing such drawbacks by edge computing. Then we conduct a comprehensive survey on 
existing works from four aspects, i.e., computation scheduling, information perception, energy-saving, 
and security. Finally, we point out several future research directions worth our attention. We believe 
that wearable devices enhanced with edge computing technologies would bring more benefits and 
convenience to our life shortly.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Wearable technology is developing fast in recent years. Accord-
ing to the International Data Corporation, the wearable shipment 
volume is expected to have a five-year compound annual growth 
rate (CAGR) as high as 12.4% and reach from 396.0 million units 
in 2020 to 637.1 million units in 2024 [1]. Unlike smartphones, 
many wearable devices continuously stay close to human bodies, 
sensing from or interacting with the human body directly and 
automatically without much manual intervention. Therefore, wear-
able devices like smartwatches, wrist bands, and smart glasses can 
profoundly improve the quality of life in a manner that smart-
phones cannot achieve. For example, Mi Smart Band 5 [2] can 
sense the heart rate around the clock to justify the health status 
of the user and vibrate to remind the user in case of an unusu-
ally high heart rate. Apple Watch [3] records motion data collected 
by the accelerometer sensor to justify if the user suffers a hard 
fall. An emergency call will be initiated automatically if the user 
keeps immobile for about a minute after the fall is detected. In 
summary, the source of wearables’ unique power is their “wearing-
while-using” feature.

However, this “wearing-while-using” feature also brings disad-
vantages for wearables at the same time. Wearable devices need 
to be lightweight and well-fitting enough to make users feel com-
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fortable while using them. Due to these requirements on size and 
weight, wearables may have to adopt low-end hardware. For ex-
ample, batteries on wearables are relatively small and thus require 
a high recharging frequency for continuous service (e.g., Apple 
Watch Series 6 [3] requires recharging every 18 hours). Delay-
sensitive wearable applications, such as wearable-based fall de-
tection [4,5], and Simultaneous Localization and Mapping (SLAM) 
in headsets [6] may not be feasible on many commercial off-the-
shelf (COTS) wearables due to their limited computing capabili-
ties.

To meet the aforementioned challenges for wearables, one 
promising method is to provide external resources to constrained 
wearables through communication technologies. For example, mo-
bile cloud computing (MCC), which provides data storage and pro-
cessing functionalities at remote cloud servers to mobile devices 
[7], could be utilized to enhance resource-limited mobile devices 
without any increase of the device size or weight. Although many 
works aim at enhancing various kinds of mobile devices via MCC 
(e.g., MCC-powered searching service [8], payment service [9], etc), 
we argue that MCC is not suitable for many wearable applications 
due to several special characteristics of wearable devices and wear-
able applications. First, many wearable applications, such as those 
monitoring the health emergency of users [4,10], need to run in 
real-time. However, in the MCC paradigm, data is uploaded to the 
cloud via an unstable Internet connection, incurring a high and 
fluctuant latency. Second, many wearable applications take data 
continuously generated by sensors as input [10–12]. Uploading 
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Fig. 1. The relationship between computation distance and power consumption for 
mobile devices. The x-axis denotes the distance between the device and the location 
where computation occurs.

such vast amounts of data to the mobile cloud would impose a 
great overhead on the Internet.

As an emerging computing paradigm, edge computing pro-
vides an opportunity to overcome these flaws of MCC while still 
providing resources to wearables. In this survey, the terminology 
“edge computing” specifically refers to multi-access edge comput-
ing (MEC). According to the European Telecommunications Stan-
dards Institute (ETSI) [13], multi-access edge computing is defined 
as a system that provides an IT service environment and cloud-
computing capabilities through deploying devices at the edge of 
an access network. For convenience, we will refer to devices pro-
viding edge computing capabilities as edge gateways in this arti-
cle. With a decentralized architecture, edge gateways in MEC are 
much closer to wearables than centralized cloud servers, leading 
to a lower latency, a smaller jitter, and less overhead on the In-
ternet. A more detailed introduction to edge computing is in Sec-
tion 2.2.

From the above discussion, we make such arguments: (a) wear-
ables mainly rely on local (i.e., on-device) computing [14], and 
edge computing [10–12]; and (b) other types of mobile devices 
could exploit local computing, edge computing [15,16], and cloud 
computing [8,9]. We summarize such views in Fig. 1. Indeed, there 
exist many works aiming at performing complex perception algo-
rithms in wearable systems with the aid of edge gateways. For 
example, Edge-SLAM [6] offloads two computing-intensive com-
ponents, the local mapping, and the loop closing, from wearables 
to edge gateways. Edge computing could also be utilized to en-
hance wearables’ battery life, such as achieving energy-efficient 
persistent storage with encryption [17], and running optimization 
algorithms on edge gateways to regulate the status of wearable 
sensors [18,19]. Besides, due to the limited storage space of wear-
ables, it is natural to store data generated by wearables on edge 
gateways — many wearables [2,3] support syncing generated data 
to edge gateways such as paired smartphones.

Several surveys on wearable devices or edge computing have 
been published in recent years. Seneviratne et al. [20] conducted 
a comprehensive survey on wearables in terms of communication 
security, energy efficiency, and computing. However, the authors 
only mentioned several works that combine MCC with wearables 
and ignored the usage of MEC in wearable applications. Ghamari 
et al. [21] conducted a survey on wireless body area networks 
for healthcare. The authors considered the wearable-based health-
care system as a four-layer model, which is essentially an edge 
computing system. Nevertheless, their survey mainly focuses on 
investigating and comparing existing low-power communication 
technologies suitable for wearables in a residential environment. 
Mach et al. [22] surveyed architecture and offloading techniques 
of edge computing. Abbas et al. [23] investigated edge computing 
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Fig. 2. Overview of existing research efforts devoted to edge computing for wearable 
technology.

in terms of architectures, advantages, applications, state-of-the-art 
(SOTA) research, security, etc. All aforementioned papers, however, 
focus on either wearable devices or edge computing, rather than 
the combination of these two technologies. Considering the great 
potential to integrate wearables and edge computing, we think a 
survey on works integrating these two technologies could be of 
interest to many researchers.

To the best of our knowledge, this paper is the first to present 
a detailed survey of edge computing for wearable technology. As 
shown in Fig. 2, we organize existing works on edge computing 
for wearables into four research topics, i.e., scheduling, information 
perception, power saving, and security.

The remainder of the paper is organized as follows. In Sec-
tion 2, we first give a brief introduction to wearable technology 
and edge computing. Then we discuss the potential to integrate 
the two technologies. In Section 3, we review each of the four crit-
ical issues presented in Fig. 2 separately. In Section 4, we discuss 
future research directions in edge computing for wearable technol-
ogy. This paper is concluded in Section 5.

2. Wearable devices and edge computing

2.1. Wearable devices

As we have discussed in Section 1, wearables are typically made 
tiny in size and light in weight for user convenience. To validate 
this viewpoint, we have investigated the technical specifications of 
some popular wearable products and summarized the results in 
Table 1. From Table 1 we can find that most smartwatches and 
wrist bands are lighter than 50 grams.

We have also pointed out in Section 1 that wearables usually 
adopt low-end hardware due to the constraint on size and weight. 
To show the resource constraint of wearables more intuitively, we 
compare their computation capacity and battery life with other 
more powerful mobile devices including smartphones, tablets, and 
laptops in Fig. 3. As shown in Fig. 3, today’s wearables either sac-
rifice battery life or computation capacity. In contrast, mobile de-
vices like smartphones are not as constrained on size and weight 
as wearables, so they could possess a long battery life and a strong 
computation capacity at the same time.

Generally, the resource limitation causes three drawbacks 
among wearable devices:

• Long-range communications are restricted. As shown in Ta-
ble 1, many wearable devices merely support the Bluetooth 
protocol, and only two of all products listed in Table 1 support 
Cellular networks or Wi-Fi connections. Therefore, wearable 
devices should typically rely on nearby smartphones or lap-
tops to connect to the Internet.
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Table 1
Technical specifications of some COTS wearable devices.

Product name Product type Weight (g) Battery Connectivity Data 
sourceCellular Wi-Fi Bluetooth

Apple Watch Series 6 Smart Watch 30.5–47.1 18 hours √ √ √ [3]
Fitbit Charge 4 Wristband 30.1 7 days √ [24] [25]
Microsoft HoloLens 2 Mixed Reality Headset 566 2–3 hours √ √ [26]
Bose Frames Tempo Smart Glasses 371.4 8 hours √ [27]
Amazon Echo Loop Smart Ring 9–12 1 day √ [28]
Mi Smart Band 5 Wristband 11.9 >14 days √ [2]
Apple AirPods Max Smart Hearable 384.8 20 hours √ [29]
Huawei X Gentle Monster Eyewear II Smart Glasses 44.2–48.1 5 hours √ [30]
Fig. 3. Battery life and computation capacity of mobile devices. We use data in Ta-
ble 1 for wearables, while the data sources for other mobile devices are [31,32]. We 
only use the technical specifications of today’s top products to make a fair compar-
ison.

• Perception capabilities are impaired. Wearable devices may 
not be equipped with high-end sensors which provide ad-
vanced functions with high precision at the cost of high energy 
consumption [33,34]. Moreover, it is difficult for wearables to 
continuously process the sensed data with complex algorithms 
to accurately obtain high-level information.

• More vulnerable to attacks. Wearable devices are more vul-
nerable to attacks than general-purpose computers for three 
main reasons. First, wearables may not have enough resources 
to execute antivirus software continuously for malware de-
tection. Second, wearables could not afford to encrypt every 
message using more secure yet computing-intensive asymmet-
ric encryption. Actually, even the commonly used and less 
computing-expensive methodology of exchanging a symmet-
ric key with the assistance of asymmetric encryption, e.g.,
the key agreement mechanism in Transport Layer Security 
(TLS), is not prevalent in COTS wearables. As we will discuss 
in Section 3.4, many research efforts are aimed at improv-
ing the security level of key exchange without the assistance 
of asymmetric encryption. Nevertheless, the existing key ex-
change methods for wearables are still less reliable than asym-
metric encryption-aided methods. Third, since some wearables, 
e.g., Amazon Echo Loop [28], and Hexoskin Smart Kit [35] do 
not have user interfaces, users may not notice any anomaly 
for a relatively long time since these wearables are compro-
mised.

2.2. Edge computing

Edge computing has been widely used in multiple fields, such 
as video analysis, content delivery, and smart city. For instance, 
Ananthanarayanan et al. [36] listed five potential applications 
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based on video analysis, including traffic management, smart cars, 
personal digital assistants, surveillance, and augmented reality. The 
data can be processed on edge gateways to achieve a low latency. 
Content Delivery Network (CDN) is another example. Static re-
sources are deployed on the intermediate server close to clients to 
reduce the overall network latency. In a smart city, there are many 
sensors generating large amounts of data every day. To reduce the 
transmission overhead, the majority of raw data is processed at the 
edge [37].

Different from cloud computing, which typically only contains 
an end device layer and a central cloud layer, edge computing, as 
shown in Fig. 4, also contains an edge gateway layer. We will next 
briefly introduce these three layers.

The end device layer consists of various end devices, including 
but not limited to wearable devices, smart city devices, and smart 
home devices. These end devices have certain features in com-
mon. First, many end devices are equipped with sensors that con-
stantly generate measurements of the physical world. The gener-
ated data is the input of many real-world applications [5,6,11,36]. 
For example, many COTS wearables have accelerometer embed-
ded [2,3,26,29], and many smart speakers [38,39] are equipped 
with microphones to listen to voice commands from users. Second,
these end devices are typically made with fewer resources than 
general-purpose computers for wide deployment at low cost. For 
example, widely deployed smart cameras typically have “a single 
CPU core, CPU speeds of 1–1.4 GHz, and 64–256 MB of RAM.” [40]

As for the edge gateway layer, it consists of edge gateways that 
are in the vicinity of end devices and have relatively rich resources. 
Since resource-limited end devices may not be able to process 
continuously generated sensor data in real-time, many works aim 
at offloading computation from end devices to edge gateways to 
achieve a lower processing latency [41,42]. Edge gateways in the 
edge gateway layer can be further divided into two categories: 
(a) public MEC servers such as network routers, base stations, and 
servers customized for MEC; and (b) powerful private devices such 
as smartphones, tablets, and laptops. Some works target public 
MEC servers [6,43–45], while others focus on powerful private de-
vices [5,10,17,46].

The central cloud layer aims at providing “a shared pool of 
configurable computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider in-
teraction.” [47] The amount of resources that could be rapidly 
provisioned in today’s large cloud service providers is really in-
credible, e.g., hundreds or even thousands of cloud servers could 
be deployed in minutes when the users of Amazon Web Services 
(AWS) need to [48]. Despite much more abundant resources than 
edge gateways, cloud servers are typically far away from end gate-
ways and thus not suitable for many delay-sensitive applications. 
As discussed in Section 3.2 and summarized in Table 4, in ex-
isting edge computing systems for wearables, the central cloud 
layer mainly supports large-scale data processing [11,49] and re-



X. Jin, L. Li, F. Dang et al. Digital Signal Processing 125 (2022) 103146

Fig. 4. Common architecture of edge computing.

Table 2
Comparison of three layers in edge computing.

Layer Deployment Transmission delay Computing capacity Storage capacity

End Device Layer Distributed No Low Low
Edge Gateway Layer Distributed Low Moderate Moderate
Central Cloud Layer Centralized High High High
mote engagement [50], rather than real-time processing of sensor 
data.

From the top central cloud layer to the bottom end device 
layer, computing and storage resources of the individual device 
get weaker, but the device locations are more distributed and the 
number of devices is growing bigger. A comparison of these three 
layers is shown in Table 2. End devices can offload some com-
plex computing tasks to edge gateways, after which edge gateways 
can filter, process, and aggregate data generated by end devices. 
Then edge gateways can transmit the intermediate processing re-
sult to the central cloud for further analysis or further use. Other 
resources of edge gateways and cloud servers (i.e., storage space) 
can also be utilized by end devices.

2.3. Integration of wearable technology and edge computing

As we have discussed in Section 1, edge computing is better 
suited to assisting wearables than MCC, due to its advantages on 
latency and bandwidth requirement. Enhanced by edge computing, 
wearables could be more powerful in the following aspects. First,
wearables’ perception ability can be further explored in combina-
tion with edge computing. The main reason is that wearables alone 
may not be able to perform an in-depth analysis of raw data due to 
limited on-device resources. By transmitting data collected by sen-
sors to edge gateways, or even cloud servers in certain situations, 
more complex pattern recognition methods can be utilized, and 
thus more meaningful and accurate information can be recognized. 
Second, wearable devices’ battery life can be greatly extended by 
reducing the energy consumption of sensing, storage, and compu-
tation via edge computing. This effect can be further amplified by 
using more energy-efficient communication protocols to transmit 
data between wearables and edge gateways. These two aspects will 
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be discussed in more detail in Section 3.2 and Section 3.3 respec-
tively.

Despite all these benefits, the adoption of edge computing in 
wearable applications however also brings many security concerns. 
In addition to subjective factors, such as insufficient attention to 
security when designing such systems, there are many objective 
reasons leading to the current fragile security situation:

• Heterogeneous Operating Systems and Communication Pro-
tocols. Wearables and edge gateways may run diverse op-
erating systems, such as Linux, Real-Time Operating System 
(RTOS), etc. Some wearables even run programs directly with-
out installing any operating systems on the device. Besides, 
different wearables and edge gateways may support differ-
ent communication protocols, such as Narrowband Internet of 
Things (NB-IoT) [51], ZigBee [52], LoRa [53], Bluetooth Low 
Energy (BLE) [54], etc. Such heterogeneity introduces much 
difficulty in designing a unified security mechanism, since it 
may take time and efforts to migrate security frameworks 
from one wearable-oriented edge computing system to oth-
ers [55].

• Limited Resources in Wearables. As we have discussed above, 
wearables only have limited resources. Therefore, they just 
cannot adopt complex defensive measures as general-purpose 
computers do and are thus more vulnerable to many kinds of 
attacks.

3. Existing research efforts

As shown in Fig. 2, existing research efforts devoted to edge 
computing for wearable technology can be grouped into four re-
search topics, including scheduling, information perception, power 
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Table 3
Comparison of scheduling technologies.

Reference Resource 
competition 
considered

Working stage Computing nodes Solution

Initial 
server 
deployment

Application 
runtime

End 
device

Edge 
gateway

Cloud 
server

[56] No √ √ √ Using Bandwidth Prediction to Decide Offloading 
Strategy

[41] No √ √ √ √ A Delay-minimizing Offloading Policy Considering 
End-to-edge, Edge-to-cloud, and Edge-to-edge 
Interaction

[42] No √ √ √ An Online Learning Based Offloading Algorithm with 
Adaption to Dynamics

[57] No √ √ √ √ A Heuristic Algorithm Giving Priority to Interactive 
Sub-tasks

[45] Yes √ √ √ Adoption of Delay Ranking for Searching Ideal 
Deployment Locations

[58] Yes √ √ √ Formulation of a Multi-objective Server Deployment 
Problem using Mixed Integral Programming

[59] Yes √ √ √ Formulating the Allocation of CPU Cycles in Edge 
Gateways as a Multiple Knapsack Problem

[60] Yes √ √ √ A Distributed Offloading Algorithm Based on Game 
Theory to Coordinate Usage of Multiple Wireless 
Channels

[46] Yes √ √ √ √ A Context-aware Offloading Scheme to Balance User 
Experience of Wearables and Energy Saving of Edge 
Gateways
saving, and security. Each research topic is investigated in one of 
the four subsections of this section.

3.1. Scheduling

In this paper, scheduling refers to the scheme used for allocat-
ing resources of local devices, edge gateways, and cloud servers to 
the execution of applications. Some works only consider a single 
application, while others take resource competition among multi-
ple applications into consideration. We investigate these two kinds 
of works in Section 3.1.1, and Section 3.1.2 respectively. All sur-
veyed works are listed in Table 3.

3.1.1. Scheduling a single application among three layers of edge 
computing

Many works aim at scheduling a single application, with various 
goals such as improving the user experience with lower execution 
delay, reducing the energy consumption of wearables, etc. Since 
energy saving is one of the most important research issues in 
wearable technology, we will discuss it as an independent topic 
in Section 3.3. Here we focus on works related to reducing the ex-
ecution delay through computation offloading.

The total delay of a computing task is the sum of transmis-
sion delay and computing delay. On-device computing incurs the 
highest computing delay and no transmission delay; cloud com-
puting incurs the lowest computing delay but the highest trans-
mission delay. Edge computing is a trade-off between on-device 
computing and cloud computing since it incurs intermediate-level 
transmission delay as well as intermediate-level computing de-
lay. Many works aim to divide a task into sub-tasks and assign 
them to different layers to achieve the optimal total delay. Multi-
ple aspects are considered when designing the task partition and 
assignment strategies, including the complexity of sub-tasks, the 
amount of intermediate data between sub-tasks, the current status 
of network and execution environments (e.g., available CPU capac-
ity on each available execution environment, network bandwidth, 
etc). Wolski et al. [56] designed a scheduler to decide whether a 
task needs to be offloaded for better performance based on the 
prediction value of bandwidth between the local device and the 
5

remote server. Yousefpour et al. [41] proposed a delay-minimizing 
offloading scheme for edge gateways, with the goal of reducing the 
service delay for IoT nodes. Since the proposed framework does 
not restrict the “number, type, or topology” of Internet of Things 
(IoT) nodes, edge gateways, and cloud servers, it could be utilized 
to make decisions on computation offloading in edge computing 
systems for wearables. The authors considered the case where 
multiple edge gateways are available for a single application. IoT-
to-cloud interaction, edge-to-cloud interaction, and communication 
between edge gateways are adopted to reduce the service delay 
through sharing the load. Wang et al. [42] also focused on the case 
where multiple edge gateways are available for a single applica-
tion and targeted optimizing the application latency. The novelty 
mainly lies in considering the mobility of both IoT nodes and edge 
gateways, which could be very common in the case of wearables, 
and the temporal variation of shareable resources. To adapt to the 
dynamics, the authors proposed an online learning-based offload-
ing strategy, in combination with the Combinatorial Multi-Armed 
Bandits (CMAB) framework.

In addition to the aforementioned works that treat the delay 
of each task as equally important, some works rethink the offload-
ing problem by assigning different weights to the delay of different 
tasks belonging to a single wearable application. These works think 
that tasks involving user interaction have a more significant influ-
ence on the overall user experience and give priority to these tasks 
when designing the offloading scheme. Cheng et al. [57] referred 
to tasks that should be executed only on wearables as w-tasks (e.g.,
sensing, display, etc), and categorized all tasks into two classes – 
w-tasks and non-w-tasks. They believed that the response time of 
w-tasks has a greater impact on the user experience than that of 
non-w-tasks. Therefore, to enhance the user experience, they pro-
posed a heuristic algorithm aiming at enabling as many w-tasks as 
possible to execute within a guaranteed delay from the last exe-
cuted w-task.

3.1.2. Scheduling resources to user requests
Resource allocation is an important research issue in the con-

text of edge computing. As shown in Fig. 5, the resource allocation 
problem can be further divided into two main sub-problems based 
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Fig. 5. Resource competition between users. Resource allocation consists of two phases and is represented by arrows.
on the timescale of the problems [59]. One is the initial deploy-
ment of public MEC servers which occurs on a long timescale 
of several months, and the other is the allocation of currently 
available resources to multiple simultaneous user requests which 
happens on a short timescale of minutes or seconds. The scheme 
adopted to allocate finite resources to numerous users can have a 
great impact on the overall service quality.

As for the initial placement of public MEC servers, it is mainly 
involved with edge computing service provided at a large scale (i.e.,
country-wide networks or global networks) by large companies 
and institutions, rather than powerful private devices owned by 
individual users. An inappropriate initial deployment of resources 
may assign too much computing resources to regions with lit-
tle demand for edge computing service and insufficient resources 
to regions where many computing-intensive edge computing ap-
plications are running, thus wasting costly computing resources 
deployed at the edge. Many researchers try to improve the over-
all Quality of Service (QoS) of edge computing through the proper 
MEC server placement. Yin et al. [45] presented a decision support 
framework called Tentacle to determine server placement poli-
cies. Tentacle takes many factors (including monetary budgets, QoS 
requirements, traffic constraints, etc) into consideration and can 
identify unforeseen better edge locations. A user performance im-
provement as high as 10–45% is observed at global-wide networks 
in the simulation experiments. Wang et al. [58] formulated the 
server deployment problem as an optimization problem, with the 
goals of load balancing of public MEC servers and minimum end-
to-end delay between end-users and public MEC servers.

As for the allocation of deployed resources to multiple simul-
taneous user requests within a region, it involves both public 
MEC servers and powerful private devices. An inappropriate alloca-
tion scheme may cause network congestion, e.g., many users may 
choose the same wireless communication channel, or allocate ex-
cessive resources of edge gateways to less urgent wearables appli-
cations but only leave insufficient resources to those urgent ones, 
thus ruining the overall benefit of edge computing. Ketykó et al. 
[59] focused on competition for CPU cycles of edge gateways and 
reduced the multi-user resource allocation problem in edge com-
puting to a Multiple Knapsack Problem. Chen et al. [60] noticed 
6

that in a multi-channel wireless network, users will interfere with 
each other if too many of them choose the same channel for data 
transmission. They put forward a distributed offloading mechanism 
based on the game theory to decide: (a) whether a task should 
be offloaded or executed locally; and (b) which wireless chan-
nel should be chosen to alleviate interference and achieve lower 
transmission delay. Yang et al. [46] proposed a context-aware task 
offloading (CATO) mechanism that applies to Android-based edge 
gateways. Specifically, in existing Android systems, there are two 
kinds of processes – foreground processes and background pro-
cesses. Foreground processes use all CPU resources and execute 
faster, but they consume more energy on gateways. In contrast, 
background processes are more energy-saving, at the cost of ex-
ecuting slower with limited CPU resources. Hardware-level tech-
niques are exploited by many Android smartphones to distinguish 
foreground and background processes, e.g., the ARM big.LITTLE ar-
chitecture consists of big CPU cores suitable for foreground pro-
cesses and little CPU cores tailored for background processes. In 
CATO, offloaded tasks related to user interactions are considered 
urgent and executed in foreground processes, while other offloaded 
tasks are executed in background processes or even further of-
floaded to cloud servers. In this way, CATO achieves a balance 
between user experience on wearables and energy saving on gate-
ways.

3.2. Information perception

As discussed in Section 2.1, wearable applications typically have 
limited perception capabilities. By partitioning and offloading tasks 
to edge gateways or even the central cloud, wearable devices can 
conduct complex analyses on raw data, thus having a better per-
ception of the ambient environment as well as the user status, and 
greatly improving the quality of human life. Existing works related 
to extending wearables’ perception ability via edge computing can 
be roughly grouped into three categories: (a) localization; (b) hu-
man activity recognition (HAR); and (c) disease surveillance and 
treatment. All investigated works are summarized in Table 4. Be-
sides, we also compare the data quality requirement as well the 
computation complexity of these works. The results are shown 
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Table 4
Comparison of works exploiting edge computing for information perception of wearable applications.

Reference Target Required 
hardware

Core algorithm Computation within each layer

End device 
layer

Edge gateway 
layer

Central cloud 
layer

[50] L GPS Sensor; 
RFID Tag

- Location 
Estimation based 
on GPS

RFID Reading Store the Location 
Data for Remote 
Access

[6] L Camera A Distributed Visual-SLAM 
Algorithm

Tracking Local Mapping; 
Loop Closing

-

[5] A Accelerometer Machine Learning Algorithms for 
Fall Detection

– Execution of 
Machine Learning 
Models

Model Updating; 
Archiving; 
Visualization

[12] A Accelerometer A Hierarchical HAR Framework Execution of a 
Lightweight 
Classifier and an 
Offload Controller

Execution of a 
Complex Classifier

-

[11] A Accelerometer; 
Gyroscope

A HAR Algorithm Incorporating 
K-means Clustering, Support 
Vector Machines, and Hidden 
Markov Models

Pre-processing Performing Data 
Analysis

Processing of Data 
from the Whole 
Community

[61] D rs-fMRI Sensor; 
EEG Sensor

A Pipeline for Localization of 
Epileptogenicity using 
Multimodal Data

– Execution of the 
Pipeline

–

[49] D Health Sensor; 
Environmental 
Sensor;Location 
Sensor

A Framework Incorporating 
Individual Infection Detection 
and Large-scale Outbreak 
Analysis

- Individual 
Infection 
Classification

Large-scale 
Outbreak Analysis

[10] D ECG Sensor A Heart Attack Alerting Pipeline 
based on the QRS Signals

- Data 
Pre-processing

Performing 
Diagnosis

[66] D pH Sensor; 
Heater; 
Temperature 
Sensor

– – Not Reported Supporting 
Remote 
Engagement

Abbreviations used in the 2nd column: L – Localization; A – Activity Recognition; D – Disease Surveillance and Treatment.
Fig. 6. The research status of enhancing wearables’ perception ability via edge com-
puting.

in Fig. 6, where works focusing on localization (Safety Services 
for Children [50], and Edge-SLAM [6]), activity recognition (Smart-
Fall [5], Hierarchical HAR [12], and Fog-based HAR [11]), and dis-
ease surveillance and treatment (Epilepsy Monitoring [61], Chikun-
gunya Monitoring [49], and Heart Attack Alerting [10]) are marked 
by triangles, squares, and circles respectively.

3.2.1. Localization
Wearable devices with localization ability are of great practi-

cal value since they can support many services such as tracking 
children/elderly for safety purposes, recommending nearby stores, 
and navigation to other places. In many cases, edge gateways are 
required to implement a wearable localization system. We argue 
that there are three main reasons for the need of edge computing 
7

in such systems. First, some localization methods (such as meth-
ods based on radio-frequency identification (RFID) and received 
signal strength indicator (RSSI)) require the participation of other 
devices, which are usually installed on an edge gateway in the con-
text of wearable-based localization. Second, some wearable local-
ization applications rely on an edge gateway with Internet access 
to upload their location to servers for further use. Finally, some lo-
calization methods (e.g., SLAM) are computing-expensive and it is 
necessary to offload some tasks to edge gateways to perform such 
methods in a real-time manner.

Jutila et al. [50] proposed a safety service that incorporates 
wearable sensor technology with edge computing. Specifically, stu-
dents are required to carry a device that could upload position 
calculated from the Global Positioning System (GPS) to servers, and 
RFID tags that can interact with RFID readers deployed at school. 
Locations, where children occur, are recorded on cloud servers and 
shown to teachers and parents, which can help to prevent chil-
dren from being lost. Since RFID tags alone cannot infer whether 
a pupil appears in a specific area or upload its data to cloud 
servers through the Internet, edge computing plays a key role in 
such a system. Another example is SLAM, which consists of the 
simultaneous estimation of the motion state and location of a de-
vice equipped with some sensors, and the construction of a map 
of the ambient environment [62]. By running SLAM algorithms 
in headsets, users can localize themselves in a complex environ-
ment and enjoy various location-aware services such as peer-to-
peer indoor navigation [63]. Nevertheless, as Xu et al. [64] have 
demonstrated, even the latest smartphone (e.g., Samsung Galaxy 
S10 and Google Pixel 2) cannot execute computing-intensive ORB-
SLAM [65] at 15 frames per second (FPS) alone, not to mention 
resource-limited wearable devices. Ali et al. [6] presented an end-
edge collaborative SLAM system called Edge-SLAM to solve this 
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problem. They demonstrated that through offloading local map-
ping and loop closure tasks from mobile devices with wearable-
grade computing ability to the edge, the latency of these two tasks 
and overall memory usage in mobile devices could be greatly re-
duced.

3.2.2. Activity recognition
Activity recognition is the cornerstone of many practical appli-

cations, such as human-computer interaction, health surveillance, 
and lifelogging. Wearables are suited for collecting data to support 
this task. Since activity recognition may involve some complex al-
gorithms to achieve high detection accuracies, edge computing is 
often employed. Samie et al. [12] proposed a hierarchical method 
for activity recognition, which consists of a binary classifier to de-
cide whether to offload computation to the edge gateway or not, 
a lightweight local classifier recognizing only a subset of all activ-
ities, and a powerful edge-based classifier recognizing all possible 
activities (or remaining categories). The authors demonstrated that 
this hierarchical model can achieve 3x energy saving and slightly 
higher accuracy than the baseline strategy to offload everything. 
Mauldin et al. [5] proposed a three-layer fall detection system 
called SmartFall. In SmartFall, data collected by a smartwatch at 
the end device layer is transferred to a paired smartphone lo-
cated at the edge gateway layer. After receiving the raw data, the 
paired smartphone will run deep learning models on the data for 
fall detection, send alert messages to care providers, and finally 
upload data to the central cloud layer for the model updating, 
archiving, and visualization. Similarly, Concone et al. [11] pro-
posed a three-tier architecture for human activity recognition, in 
which the resource-constrained wearable devices are only used to 
sense and preprocess raw data, and the smartphones are respon-
sible for executing computing-intensive activity recognition algo-
rithms.

3.2.3. Disease surveillance and treatment
Wearable sensors can also collect various kinds of physiolog-

ical data, opening the door for human disease surveillance and 
treatment. Researchers have combined these dedicated wearable 
sensors with edge computing to create better patient monitoring 
services with long battery life and short response time. Hosseini et 
al. [61] pointed out that the brain activity of epilepsy patients con-
sists of four states, i.e., the preictal state, ictal state, postictal state, 
and interictal state. When a seizure is about to occur, the brain 
activity is in the preictal state. Then follows the ictal state identi-
fying “the interval during which activity manifests as a seizure.” 
The postictal state indicates the end of the seizure. As for the 
interictal state, it occurs between seizures. They designed a sys-
tem to monitor and treat epilepsy patients. Specifically, the system 
uses wearable sensors to collect electroencephalography (EEG) and 
resting-state functional magnetic resonance imaging (rs-fMRI) data, 
and then sends collected data to edge gateways to identify the pre-
ictal state as well as localize the seizure focus. Once the preictal 
state is identified, the system will make an alert or stimulate lo-
calized focus to prevent seizure. Sood et al. [49] targeted using 
edge computing for wearable technology to diagnose and prevent 
the outbreak of the Chikungunya virus. The proposed system has 
a three-tier architecture, i.e., the data accumulation layer includ-
ing wearable sensors as well as ambient environmental/location 
sensors, the edge gateway layer responsible for executing classi-
fication algorithms to identify virus infection and making alerts 
when necessary, and the cloud layer responsible for monitoring 
and controlling the outbreak of the Chikungunya virus. Gusev et al. 
[10] developed a heart attack alerting system consisting of a wear-
able electrocardiogram (ECG) biosensor, a smartphone, and a cloud 
server, based on the fact that “a heart attack may be predicted a 
couple of hours before its onset by detecting changes in the Elec-
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trocardiogram (ECG) of the patient.” [67] ECG data is collected by 
sensors and transmitted to smartphones for preliminary process-
ing, after which it is transmitted to cloud servers for final diagno-
sis. In case of an identified impending heart attack, cloud servers 
will send an alert message to doctors and 24h healthcare service 
centers together with the location of the patient’s smartphone. 
Mostafalu et al. [66] developed a smart bandage consisting of a 
re-usable electronics module and a disposable patch. The patch is 
equipped with sensors, a microheater, and thermo-responsive drug 
carriers. Data sampled by sensors, which could reflect the status of 
chronic wounds, is transmitted to the smartphone via the Blue-
tooth module of the electronics module. The smartphone could 
be used to make decisions on drug release with the involvement 
of patients, caregivers, etc. Decisions could be transmitted to the 
electronics module through Bluetooth, after which the electron-
ics module could regulate the power applied to the microheater 
and thus influence the amount of thermo-responsive drug carriers’ 
emission.

3.3. Power saving

As shown in Table 1, many wearable products use small-sized 
batteries and are limited to relatively short battery life. As wear-
able manufacturers tend to integrate more sensors and thus leave 
less space for batteries, the situation is easy to deteriorate in the 
future.

Wearable devices’ energy consumption is mainly caused by four 
functionalities, including sensing, storage, computation, and com-
munication. Edge computing can reduce wearables’ energy con-
sumption caused by sensing, storage, and computation. Since adop-
tion of edge computing may incur additional energy consumption 
of communication modules on wearables, we also introduce some 
energy-efficient communication protocols at last.

3.3.1. Saving energy consumption of sensing
One way to enhance wearables’ battery life is to dynamically 

adjust their onboard sensors’ working states by running optimiza-
tion algorithms in edge gateways. Amiri et al. [18] observed dif-
ferent activities of patients result in a different degree of signal 
quality degeneration in the context of wearable sensors. Therefore, 
different sensing power is required to achieve the same Signal-to-
Noise Ratio (SNR) for different activity states, e.g., a higher sensing 
power is required for a running patient to achieve the same SNR 
as a sitting patient. They proposed an adaptive optimization algo-
rithm running on the edge gateway layer. The algorithm is based 
on the patient’s contextual information, e.g., health status, activity 
status, etc, and decides the most energy-efficient working states of 
wearable sensors which could maintain an acceptable signal qual-
ity in all possible activity states. The edge gateway will instruct 
the sensors to change their working states after the optimization 
algorithm gives a suggestion. Similarly, Anzanpour et al. [19] de-
signed an edge-assisted control engine to configure wearable sen-
sors’ working state adaptively, e.g., switching between low power 
and high power mode, or choosing between periodic recording and 
continuous sensing, by incorporating multiple goals such as the 
health status of the user, the continuity of monitoring, and the 
sensing accuracy. The energy consumption would decrease by 44% 
at most from the observation.

An alternative method is to use the rate of kinetic energy har-
vesting (KEH) rather than specialized and energy-hungry sensors 
for sensing. In KEH-enabled wearables, user mobility-induced ki-
netic energy is exploited to charge wearables. Since the rate of 
KEH reflects the status of user motion and movement to some 
extent, KEH also provides a new perspective for perception. More-
over, some researchers pointed out that EH-based perception could 
be more energy-efficient than traditional sensor-based perception. 
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For example, Lan et al. [68] noticed that the frequency of data sam-
pling has a significant impact on the overall energy consumption 
of wearables, as frequent sampling requires frequent wake-up of 
the microcontroller. However, existing activity recognition systems 
typically rely on instant acceleration data which could provide only 
instantaneous information, and thus require a high sampling rate. 
Therefore, they utilized the capacitor of the kinetic energy har-
vester in KEH-powered smart shoes for sensing. Since the capacitor 
value could provide accumulated information of the user’s mobil-
ity status, the system requires a relatively low sampling rate for 
detecting activities of daily living (ADL). The authors demonstrated 
that the proposed method could detect 5 daily activities with 92% 
accuracy as well as reduce the overall system power by 75%. Simi-
larly, Xu et al. [69] utilized the output voltage signal from KEH for 
gait recognition in wearables, which could reduce the energy con-
sumption by 82.15% as well as maintain an equal error rate (EEH) 
of approximately 10%.

3.3.2. Saving energy consumption of storage
One surprising fact about mobile storage devices is that the 

software storage stack consumes up to 200 times more energy 
than the low-power flash storage hardware [70]. Huang et al. [17]
argued that it is because of three reasons, including extended CPU 
idle time due to waiting for I/O of slow mobile flash [71], runtime 
OS overhead, and data encryption for secure storage on flash. They 
proposed the concept of BB-RAM (i.e., battery-backed RAM, which 
is considered to be non-volatile) and designed the WearDrive stor-
age system, which only uses BB-RAM on wearables but uses both 
BB-RAM and flashes on smartphones. In the WearDrive system, 
data generated by wearables are transmitted to smartphones via 
the low-power network connection, and then smartphones are 
responsible for encryption and durable storage of received data. 
Observing that BLE is more energy-efficient for transferring small 
amounts of data and WiFi-Direct is better in other cases, the 
WearDrive system flexibly selects between BLE and WiFi-Direct 
to further save the energy consumption of wearables. Experiment 
results showed that, compared to the traditional storage process 
which performs the encryption locally and then writes data to the 
local flash, the WearDrive system achieves an up to 8.85x better 
performance from the aspect of I/O throughput, and an up to 3.69x 
battery life improvement of wearables with negligible impact on 
the phone.

3.3.3. Saving energy consumption of computing
Another way to address the energy constraint is to offload 

power-hungry computing tasks to edge gateways. Early to 1998, 
Rudenko et al. [72] thought of computation offloading as a po-
tential method to improve battery life. They showed that a sig-
nificant amount of overall energy consumption could be saved 
through such a computing model, in spite of additional energy cost 
caused by data transmission. Chun et al. [73] designed a system 
called CloneCloud which enables unmodified mobile applications 
to offload some computing tasks to remote servers automatically 
and seamlessly. Experiment results showed that CloneCloud can 
achieve a 20x speed-up as well as a 20x energy consumption 
saving. Zhang et al. [44] proposed an iterative search algorithm 
to jointly optimize energy efficiency and transmission latency in 
the edge computing model, in which the remaining energy of 
smart devices is used to calculate the weighting factor of energy 
consumption and latency. Specifically, the optimization algorithm 
assigns a large weight to energy consumption if the remaining en-
ergy of smart devices is low; otherwise, more emphasis will be 
put on latency. Numerical results showed that a better life of end 
devices is enabled by the proposed method.
9

3.3.4. Saving energy consumption of communication
To further extend battery life via edge computing, it is of 

great significance to reduce the energy consumption of inter-
device communication. As shown in Table 5, many works focus 
on designing low-power communication techniques to enhance the 
battery life of end devices. Some of the listed works target op-
timizing traditional communication technologies [74–76] and still 
use the radio module in the sender to generate the carrier sig-
nal, which could be energy-intense for resource-limited wearables. 
In contrast, the latest backscatter techniques listed here [77–79]
directly modulate ambient carriers instead and thus save much 
power.

First we introduce works that optimize the energy efficiency 
of traditional communication protocols. Buettner et al. [74] pro-
posed a Media Access Control (MAC) protocol called X-MAC for 
wireless sensor networks (WSNs). In previous asynchronous pro-
tocols for WSNs, the sender sends the target address only after 
transmitting a preamble at least as long as the sleep time of the 
target receiver. This simple design guarantees that a synchronous 
receiver could always receive the packet, but it presents three seri-
ous problems: (a) the target receiver must wait for the end of the 
preamble even if it wakes up much earlier, resulting in low en-
ergy efficiency for the target receiver as well as the sender; (b) all 
non-target receivers must keep on listening until the sender trans-
mits the target device address, leading to energy waste of these 
non-target devices; and (c) the sender keeps on transmitting the 
full-length preamble even after the target receiver wakes up, in-
curring a high latency. Since X-MAC substitutes the original long 
preamble packet with a series of intermittent short preambles, 
each of which contains the target address, and an awake target de-
vice could send an early acknowledgment (ACK) during the interval 
between two adjacent short preambles. As for non-target devices, 
they could immediately go back to sleep when it obtains the target 
address from a short preamble. And the sender could start trans-
mitting payload data rather than remaining short preambles after 
it detects the early ACK. In this way, the aforementioned three 
problems could be effectively solved, and the energy efficiency of 
all nearby WSN nodes could be greatly improved. Suarez et al. [80]
evaluated the effectiveness of X-MAC in a multi-hop scenario. They 
successfully achieved a 10x ZigBee lifetime by substituting the de-
fault MAC protocol with the X-MAC protocol. The Bluetooth Special 
Interest Group introduced a new feature known as Bluetooth Low 
Energy (BLE) in Bluetooth Core Specification v4.0 Release [54], with 
the goal of running on products that “require lower current con-
sumption, lower complexity, and lower cost” than Bluetooth Basic 
Rate / Bluetooth Enhanced Data Rate (BR/EDR). Gomez et al. [75]
demonstrated that a BLE device equipped with a coin cell bat-
tery can work for at most 14.1 years theoretically, proving that 
BLE is well suited to energy-limited wearables. Li et al. [76] pro-
posed a new LoRa control system known as DyLoRa, which can 
optimize the energy efficiency of the LoRa protocol by dynam-
ically adjusting parameters such as spreading factor and trans-
mission power. Experiment results showed that DyLoRa achieved 
a 41.2% lower energy consumption than the state-of-the-art ap-
proach.

All the efforts mentioned above, however, require wearables 
to modulate data into a self-generated carrier signal. In contrast, 
in backscatter communication, the end device could modulate its 
reflections of an existing radio frequency (RF) signal which is gen-
erated by other devices. In traditional backscatter communication 
(e.g., radio-frequency identification (RFID)), a special-purpose con-
troller (e.g., an RFID reader) transmits an RF signal to the end 
device (typically known as a backscatter tag), and the end device 
simply “modulates the reflection coefficient of its antenna.” [81]
Liu et al. [77] proposed to use ambient RF signals instead, e.g.,
TV signals, cellular signals, etc. In this manner, two backscatter-
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Table 5
Comparison of low-power communication technologies.

Technology Source of the carrier 
signal

Power consumption Reference

Results Evaluation setup

X-MAC Sender 1–2 mA One Receiver & At Most 9 Senders; 
Under no Contention

[74]

Bluetooth Low 
Energy

Sender 0.01–10 mA Under the Attribute Protocol (ATT) 
One-way Communication; 
connSlaveLatency = 0; connInterval
Ranging from 7.5 to 4000 ms

[75]

DyLoRa Sender 200–500 mW One LoRa Gateway & 11 LoRa nodes [76]

Ambient 
Backscatter

Ambient Carriers Not Reported (Battery-free Prototype 
Integrating a Radio Frequency Energy 
Harvester)

– [77]

Wi-Fi Backscatter Ambient 
Wi-Fi Carriers

0.65 μW for the Transmit Circuit; 
9.0 μW for the Receiver Circuit

– [78]

Frequency-shifted 
Backscatter

Ambient 
Wi-Fi or Bluetooth
Carriers

45 μW; 1100 bits/μJ – [79]
based devices could communicate with each other without using 
a specialized controller. Huang et al. [82] proposed a battery-free 
wearable system in the form-factor of shoes. Energy harvesters 
are placed inside both the left shoe and the right shoe. Due to 
the limited amount of energy that could be collected by wear-
ables, it is infeasible to transmit harvested power from one shoe 
to another. Therefore, it is not trivial to utilize the energy from 
both shoes. The authors instead assigned different tasks to dif-
ferent shoes, i.e., one shoe for energy-intensive sensing, and the 
other shoe for energy-intensive Bluetooth communication with the 
smartphone. They chose the energy-saving ambient backscatter for 
data synchronization across two shoes. Kellogg et al. [78], however, 
noticed that since ambient backscatter could only enable commu-
nication among backscatter-based devices, it actually creates an 
isolated network that does not belong to the Internet. They solved 
this problem by proposing the WiFi Backscatter model, where Wi-Fi 
signals rather than other ambient signals are used for modula-
tion. A WiFi Backscatter tag could transmit a “1” bit or a “0” bit 
to a Wi-Fi device, through “either reflecting or absorbing the Wi-Fi 
packets” received by the Wi-Fi device. Zhang et al. [79] pointed out 
that both ambient backscatter and WiFi Backscatter have some se-
vere drawbacks. The TV carrier signal used in ambient backscatter 
is not always available, and WiFi Backscatter presents low resis-
tance to noise and mobility-induced dynamics. The authors de-
signed a backscatter tag that shifts an existing Wi-Fi or Bluetooth 
carrier to a clean frequency band. Information is transmitted by 
the tag through on-off keying (OOK). The advantages of this fre-
quency shifting mechanism are two-fold. First, the receiver only 
needs to focus on the shifted and relatively clean band. In con-
trast, in many previous backscatter technologies, the backscattered 
signal and the carrier signal reside in the same channel, leading 
to a high SNR while extracting the backscattered signal. Second,
different from ambient backscatter whose primary carrier presents 
an unknown structure, frequency-shifted backscatter could utilize 
the structure of the primary carrier, such as the fixed preamble 
of a Wi-Fi or Bluetooth packet, to which modern radio chipsets 
are designed with high sensitivity. The authors demonstrated that 
frequency-shifted backscatter could work within a longer range of 
4.8 m distance with up to 48.7 kbps throughput, at a power budget 
as low as 45 μW.

3.4. Security

In this section, we review the security issues by discussing 
several common security threats as well as corresponding de-
fensive mechanisms. Here we focus on three kinds of security 
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threats: (a) threats to data confidentiality; (b) threats to authen-
tication; and (c) threats to availability. We list surveyed works in 
Table 6.

3.4.1. Threats to data confidentiality
Data confidentiality means “the protection of data from unau-

thorized access and disclosure.” [83] Since wearables are widely 
used to collect private physiological data for health monitoring and 
run privacy-sensitive applications like e-payment, it is of high in-
terest for attackers to destroy data confidentiality.

1) Attacks on Data Confidentiality
Data confidentiality can be compromised on the local de-

vice, on the edge gateway, on the central cloud, or during the 
transmission. We cover two kinds of attacks as follows:

a) Eavesdropping Attacks
Eavesdropping attacks occur during transmission and aim 

to eavesdrop on encrypted data that is transmitted between 
wearables and edge gateways. Since the secret key is the 
foundation of data encryption, one intuitive method of ruin-
ing data confidentiality during transmission is to break the 
key.

Some researchers tried to exploit protocol-level vulnera-
bilities in the key establishment phase to perform an attack. 
Many wearables use the BLE protocol as their main com-
munication protocol to transmit data to ambient devices. 
Unfortunately, the old versions of the BLE protocol have sev-
eral well-known protocol-level flaws that provide the entry 
point for eavesdropping attacks. Many existing devices are 
using these old versions rather than the newer ones that al-
ready fix these vulnerabilities, e.g., over 4 billion devices are 
estimated to use outdated and insecure BLE 4.0 or 4.1 in 
2018 [116]. Filizolla et al. [84] noticed that some old ver-
sions of the BLE protocol (e.g., the BLE 4.0, and the BLE 4.1) 
adopt the insecure LE Legacy Pairing protocol to exchange 
a secret Long Term Key (LTK) for data encryption with the 
help of a Temporary key (TK). Through a brute-force enu-
meration, attackers can easily obtain the TK, then use the 
TK to further break the LTK and get all encrypted data ex-
changed along the channel. Furthermore, some open-source 
tools, e.g., Crackle [85], are available to utilize such vulnera-
bility and sniff BLE connections.

b) Inference Attacks Targeting Machine Learning Models
Many wearable applications now use machine learning to 

analyze the sensed data [5,12,61]. However, the wide use of 



X. Jin, L. Li, F. Dang et al. Digital Signal Processing 125 (2022) 103146

Table 6
Papers related to security issues in edge computing for wearable technology.

Attack type Threat type Research content Data 
sourceThreat to 

confidentiality
Threat to 
authentication

Threat to 
availability

Attack 
method

Defensive 
measure

Eavesdropping Attacks √ √ [84,85]
√ [86–89]

Inference Attacks
Targeting Machine Learning Models

√ √ [90–94]
√ [95–97]

Dictionary Attacks √ √ [98]
√ [99–103]

Stealing Authentication Credentials √ √ [104,105]
√ [99–103,106,107]

Breaking the Authentication Key √ √ [108]

Distributed Denial-of-Service (DDoS) Attacks √ √ [109]
√ [110–114]

Interference on the Communication Link √ √ [115]
machine learning also brings much worry about data con-
fidentiality. There exist many works focusing on inference 
attacks that seek to infer sensitive information related to the 
training samples of deep learning models. Two typical kinds 
of such attacks are Membership Inference Attacks (MIAs) 
and property inference attacks [117].

MIAs seek to infer if a specific data record belongs to 
the training set of a trained model, which could compro-
mise the confidentiality of membership information. Shokri 
et al. [91] performed MIAs based on the black-box setting, 
where only the prediction value from the target machine 
learning model and the true class label are required to in-
fer if the target data record is a member of the training 
set. Nasr et al. [90] further extended black-box MIAs to the 
white-box setting, where they used the gradient vector with 
respect to the target data point as the main input to the 
attack model. In addition to the stand-alone learning set-
ting, they also adapted their attack method to the federated 
learning setting. Experiment results demonstrated that both 
an adversarial participant and a malicious central parameter 
server could achieve an impressive accuracy of membership 
inference using the proposed method.

As for property inference attacks, they try to infer char-
acteristics of the data records in the training set. Ganju et 
al. [94] tried to compromise the global properties of the 
training set for white-box Fully Connected Neural Networks 
(FCNNs), such as the relative attractiveness of the individ-
uals in the training set for a smiley face classifier, or the 
fraction of training records from a certain class. Melis et 
al. [93] proposed an attack method which could be used 
by adversarial participants in the federated learning setting 
to “infer properties of other participants’ training data that 
are not true of the class as a whole, or even independent 
of the features that characterize the classes of the joint 
model.” Wang et al. [92] incorporated a Generative Ad-
versarial Network (GAN) with a multi-task discriminator to 
reconstruct training samples of the victim user based on a 
malicious central parameter server in the federated learning 
setting.

The above works demonstrated that private user data 
of wearable applications could be compromised by mali-
cious edge gateways (or cloud servers) if it is used to train 
or fine-tune the machine learning model deployed on the 
edge gateway layer (or on the central cloud layer). Besides, 
other end devices could also infer such private user data in 
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the federated learning setting through various attack meth-
ods.

2) Effects of Compromised Data Confidentiality
Even some attackers may only seek access to sensitive data 

out of curiosity, the compromised data confidentiality still un-
doubtedly undermines customers’ trust in wearable devices. Ac-
tually, many attackers do not stop at satisfying their curiosity. 
They may use leaked private data to make profits, e.g., sell-
ing private health data to insurance companies. They can even 
further analyze leaked data to obtain some more sensitive in-
formation and thus cause greater loss of victims. For example, 
if data sensed by a wearable accelerometer, magnetometer, or 
gyroscope sensors are exposed to attackers, then attackers can 
exploit it to infer the keystroke on mobile devices. Some re-
searchers [118–120] exploited motion data captured by wear-
able devices to infer the keystroke on mobile devices with prior 
knowledge about some context information, e.g., keyboard size, 
and posture of keypad plane. Liu et al. [121] took one step fur-
ther by performing such inference without any context-aware 
requirements. A top-5 successful attacking rate as high as 94% 
is observed in their experiment. In addition to the keystroke 
on mobile devices, other private user information is also put at 
risk by this kind of attack. Maiti et al. [122] demonstrated that 
mechanical lock combinations could be inferred by analyzing 
smartwatches’ gyroscope sensor data.

3) Possible Solutions
Due to the lack of the public key infrastructure (PKI) in typ-

ical usage scenarios of wearables, and the high computation 
overhead of public-key cryptography (PKC), it is infeasible for 
many wearables to utilize PKC against eavesdropping attacks. 
An alternative approach is to utilize a signal commonly acces-
sible to two communication parties for a key generation or key 
exchange.

In key generation technologies, two communicating devices 
could independently sample from the commonly accessible sig-
nal, and then use the recorded data as materials to generate 
keys. Since the measurement values from the two sides may 
have some difference, technologies such as error correction 
codes are required to bridge this gap and guarantee the same 
key. Xu et al. [88] gave a comprehensive survey of existing key 
generation systems for IoT and classified them based on the re-
quired hardware. Typically, there are six categories of required 
hardware, i.e., radio module, microphone, inertial measurement 
unit (IMU) sensor, miscellaneous hardware, camera, and hybrid 
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hardware. We encourage interested readers to read this survey 
[88] for further understanding.

A key exchange based on commonly accessible signals is an-
other promising way to defend against eavesdropping attacks. It 
could be enforced by hiding the exchanged secret key with the 
aid of the fuzzy vault technique or using out of band channels. 
In the fuzzy vault, the sender mixes the exchanged secret key S 
together with a set of values A. To obtain S from the mixture of 
S and A, the receiver needs to use another set of values B that 
share many common values with A. To utilize fuzzy vault for 
communication between wearables and edge gateways, A and 
B should be obtained from the measurement of a bilaterally 
accessible signal such as the accelerometer signal [87]. As for 
out-of-band key exchange, private edge gateways and wearables 
could use out-of-band signals, e.g., the vibration signal [86], to 
exchange the shared secret key.

To avoid the overhead of encrypting every message after 
agreeing on the same key, but still, be able to defend against 
eavesdroppers, one alternative solution is to use jamming tech-
niques. Shen et al. [89] proposed a jamming-based method 
known as Ally Friendly Jamming, which can disable the wire-
less communication channels of unauthorized devices but still 
enable wireless connectivity of authorized devices. Ally Friendly 
Jamming generates jamming signals with a shared secret key 
and emits them at the same time as original signals, so that 
unauthorized receivers, who are agnostic of the shared key, 
could not recover original signals from the mixture of two sig-
nals. As for authorized receivers, they can regenerate the jam-
ming signals and then subtract them from the received signals 
to recover original signals.

To defend against inference attacks targeting machine learn-
ing models, we suggest two defensive measures as follows.

First, we can restrict access to machine learning models. 
Shokri et al. [91] demonstrated that by only exposing the label 
of the most likely class, rather than the confidence values for 
all classes, the black-box MIA accuracy could be decreased by 
10%–26%. As for the white-box MIA, hardware isolation tech-
niques could be utilized to reduce the amount of informa-
tion available to attackers. Tramèr et al. [95] noticed that for 
machine learning models deployed in the central cloud layer, 
Trusted Execution Environments (TEEs), such as Intel SGX [123], 
ARM TrustZone [124], etc, could be exploited to isolate sen-
sitive computations of machine learning from the untrusted 
part of the operating system. Nevertheless, these isolation tech-
niques are currently limited to CPUs and do not adapt to 
Graphics Processing Units (GPUs) which gain much popular-
ity in machine learning-based services these days due to their 
strong parallel-processing capability. To utilize available GPU re-
sources, as well as guarantee the computation integrity and 
user privacy, they proposed to outsource all linear layers, e.g.,
convolution layers, dense layers, etc, from the TEE-based CPU 
to the untrusted GPU with the help of cryptographic proto-
cols. Mo et al. [96] also utilized hardware isolation techniques 
to improve security. They proposed to partition a Deep Neu-
ral Network (DNN) model into two parts, i.e., the “shallow” 
part containing the first few layers, and the “deep” part fol-
lowing the “shallow” part. The “shallow” part executes inside 
the TEE device to improve security, while the “deep” part ex-
ecutes in the untrusted part of the operating system to re-
duce overhead. Experiment results demonstrated that white-
box MIAs can be defended effectively even if the “shallow” 
part contains only the first layer of the DNN model, with neg-
ligible (only 3%) overhead of CPU time and energy consump-
tion.

Second, we can adjust the training process to defend against 
inference attacks. A trained model may remember some unique 
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characteristics of training samples that are not generic among 
other samples from the same class. Considering this overfitting 
problem being widely exploited to perform various inference 
attacks, a promising way to defend against these attacks is to 
alleviate such overfitting. Nasr et al. [97] adapted the training 
process of machine learning models to a min-max game, which 
seeks to train the model to be accurate as well as have the 
strongest resistance to the strongest black-box MIAs. Experi-
ment results demonstrated that the adversarial training process 
could effectively defend against black-box MIAs by alleviating 
overfitting, and significantly reducing the gap between training 
and testing accuracies.

3.4.2. Threats to authentication
Authentication means that “both the sender and receiver should 

be able to confirm the identity of the other party involved in 
the communication to confirm that the other party is indeed 
who or what they claim to be.” [125] Authentication mechanisms 
are widely used to determine the identities of connected devices. 
Through bypassing the authentication mechanism, attackers can 
disguise themselves as licensed wearables or as licensed edge gate-
ways and perform some over-privileged operations.

1) Attacks on Authentication

a) Dictionary Attacks
The most intuitive attack on authentication mechanisms 

is a dictionary attack, in which an attacker tries to match 
the weak password used for identity authentication in a 
brute-force manner. The terminology “dictionary” refers to 
a set of commonly used passwords owned by the attacker. 
Many dictionaries are publicly available now [98], lowering 
the barrier for launching such an attack.

b) Stealing Authentication Credentials
Attackers can also exploit protocol-level flaws to obtain 

authentication credentials by deception. Cassola et al. [104]
presented a variant of an evil twin attack on WPA Enterprise 
networks. By exploiting flaws in the authentication phase, 
it compromised the authentication credentials used by the 
victim, with which an authenticated connection to the le-
gitimate network using the victim’s identity could be es-
tablished. Wang et al. [105] performed a man-in-the-middle 
attack against the BLE protocol. In detail, they deployed a 
malicious device M that interrupted an already established 
connection between a peripheral BLE device P and a cen-
tral BLE device C. The device M then connected to device 
P by the JustWorks pairing method. To obtain the authen-
tication credentials required by the device P, the device M 
disguised itself as the device P and accepted the connection 
from device C. The deceived device C would send the device 
P’s authentication credentials to the device M. Finally, device 
M could send the authentication credentials to the device P 
and successfully bypassed the authentication mechanism of 
BLE.

c) Breaking the Authentication Key
Some end devices only use a hard-coded key to authen-

ticate the other party involved in the communication. For 
example, Ronen et al. [108] exploited reverse engineering to 
analyze the security mechanisms of the Phillips Hue smart 
lamps. They discovered that these lamps simply use a hard-
coded key to authenticate the received firmware updates. 
By breaking the same global key used for all the lamps 
of these product types via side-channel attacks, they by-
passed the authentication mechanisms of these lamps suc-
cessfully.
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2) Effects of Compromised Authentication
Through breaking the authentication mechanism, attackers 

can disguise themselves and perform a series of follow-up 
attacks. A typical example of these follow-up attacks is the 
firmware modification attack. A wearable device without direct 
access to the Internet may rely on edge gateways to first down-
load the latest firmware from the Internet and then send the 
firmware to it via other supported communication protocols 
such as BLE. This process has a severe vulnerability: if a ma-
licious firmware update application is installed on an infected 
gateway and successfully bypasses the authentication mecha-
nism somehow, the wearable device will be totally destroyed. 
Shim et al. [126] exploited vulnerabilities in a fitness tracker’s 
firmware modification process to perform such an attack. They 
reverse-engineered the gateway app and the target tracker’s 
firmware, finding out that no authentication is required after 
the provider is paired to the wearable device. Then they built 
a fake gateway on a PC and successfully used the fake gateway 
to trigger a firmware update with a tampered firmware. They 
used code obfuscation and integrity verification of firmware 
to mitigate such vulnerabilities. Ronen et al. [108] reverse en-
gineered the process used to trigger a firmware update on 
the Phillips Hue smart lamps and discovered that the lamps 
utilized AES-CCM to encrypt/decrypt and authenticate every 
firmware update. By conducting side-channel attacks exploit-
ing the power consumption, they successfully compromised the 
AES-CCM master key and could trigger arbitrary firmware up-
dates with the broken key.

3) Possible Solutions
To defend against dictionary attacks, some unconventional 

authentication credentials could be used in combination with 
traditional token-based authentication credentials, to form the 
so-called two-factor authentication. Besides, manufacturers can 
also substitute traditional authentication credentials with un-
conventional ones directly, which could possibly improve the 
convenience or lower the overhead of authentication. In gen-
eral, there are three kinds of unconventional authentication 
techniques, i.e., per-person credentials, per-device credentials, 
and environment-based credentials. Per-person credentials au-
thenticate the identity of users by checking biometrics such as 
human fingerprint [99], face images [100], physical characteris-
tics of touching fingers [102], etc. Per-device credentials instead 
authenticate the identity of the device, regardless of the iden-
tity of the user who is operating the device, or the environment 
where the device is placed. The basic principle behind these 
techniques is that different devices could be distinguished by 
device-specific characteristics, such as software-based charac-
teristics (e.g., due to the complexity of IEEE 802.11 standards, 
different software-level implementations differ in characteris-
tics including MAC layer behavior, frame sequence numbers, 
and traffic pattern), hardware-based characteristics (e.g., clocks 
on different devices have different offset values with respect to 
the reference clock, so the offset values can be used to iden-
tify different devices), etc. For a more detailed introduction to 
software-based and hardware-based per-device authentication, 
interested readers could refer to [103]. As for environment-
based credentials, they could be exploited to compare the am-
bient environment perceived by wearables and edge gateways. 
This kind of credentials applies to usage scenarios where a 
proximate device is highly likely to be an authorized device. 
As we have discussed earlier in Section 3.4.1, there are various 
sensors capable of capturing the characteristics of the ambient 
environment that could be used for key generation, such as ra-
dio sensors, audio sensors, etc. Obviously, information collected 
by these sensors could also be used to generate authentication 
credentials. For example, Karapanos et al. [101] proposed to 
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compare ambient noise perceived by two devices. Two devices 
sharing similar ambient noise are considered to be in proximity 
to each other. The original usage scenario of this noise-based 
authentication is to support safe account login without the 
need of copying any Short Messaging Service (SMS) verification 
code from the phone to other devices, but we can adapt this 
method to those wearable devices that only expect connections 
from nearby edge gateways.

For attacks that steal authentication credentials by decep-
tion, we suggest revising authentication protocols [106,107]. 
Device manufacturers can also use the aforementioned uncon-
ventional authentication credentials, e.g., use fingerprint data 
[99] that is hard to steal, or use two-factor authentication to 
enhance security.

For attacks that break the authentication key, we advise 
using dynamic software-based authentication keys rather than 
fixed hard-coded keys.

3.4.3. Threats to availability
1) Attacks on Availability

a) Distributed Denial-of-service (DDoS) Attacks
According to the definitions given by the U.S. Cybersecu-

rity and Infrastructure Security Agency (CISA), “a denial-of-
service (DoS) attack occurs when legitimate users are unable 
to access information systems, devices, or other network re-
sources due to the actions of a malicious cyber threat actor,” 
and “a distributed denial-of-service (DDoS) attack occurs 
when multiple machines are operating together to attack 
one target.” [127]

IoT devices are usually weaker than general-purpose 
computers and thus easier to be compromised and turned 
into “bots,” i.e., compromised devices used for launching 
DDoS attacks. A large network of “bots” is known as a “bot-
net,” which may overwhelm victim servers if its scale is 
large enough. A famous example of IoT-based botnets is the 
“Mirai” botnet, whose initial attack on KrebsOnSecurity.com 
reached up to 665 Gbps, being one of the biggest assaults 
the Internet has ever witnessed [128]. According to Anton-
akakis [129], Mirai infections peaked at 60k in their seven-
month analysis. All these surprising facts demonstrated the 
weakness of IoT devices as well as the necessity to pay at-
tention to IoT-based DDoS.

According to Vishwakarma [109], DDoS attacks in the IoT 
network can be divided into three types, i.e., application-
layer attacks, infrastructure layer attacks, and zero-day DDoS 
attacks. Application layer attacks refer to attacks occurring 
in the application layer, such as HTTP flooding that exhausts 
victim servers’ processing capability via a flood of HTTP re-
quests. In contrast, infrastructure layer attacks tend to ex-
haust victim servers’ outgoing and incoming bandwidth as 
well as internal resources by exploiting weakness at the 
transport or network layer. For example, SYN flooding ini-
tiates a TCP connection to a target server by sending an 
SYN packet with a spoofed IP address, making the server 
wait for a confirmation ACK that will never occur. As for 
zero-day attacks, attackers need to find a zero-day vulnera-
bility in the code running on the victim server. The modifier 
“zero-day” means that the attack is performed at the “ze-
ro” day since the discovery of the vulnerability when the 
vendor or developer may be unaware of the bug or do not 
have enough time to release a patch. A famous example of 
zero-day attacks is the ZDI-20-709 vulnerability which “al-
lows network-adjacent attackers to execute arbitrary code 
on affected installations of NETGEAR R6700 routers.” [130]
Specifically, the vulnerability was reported to the vendor by 
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Zero Day Initiative (ZDI) on February 5th, 2020. The ven-
dor requested an extension of public release until the end of 
June to ZDI, but the request was rejected and the vulnerabil-
ity was published online as a zero-day vulnerability on June 
15th, 2020.

b) Interference on the Communication Link
In addition to DDoS attacks, another kind of threat to 

availability is interference on the communication link. Dif-
ferent from DDoS attacks, attacks based on interference on 
the communication link do not require the presence of a dis-
tributed cluster of compromised IoT devices and is easier to 
be launched. However, targets of DDoS attacks range from 
edge gateways to any other accessible servers, while inter-
ference on the communication link can only injure devices 
in the vicinity of the attacker.

Most wearables utilize vulnerable BLE as their primary 
communication protocol, and it is easier to congest a BLE 
channel than to create a “botnet” for launching DDoS at-
tacks. Goyal et al. [115] successfully launched such a kind of 
attack on the Fitbit Charge tracker, which uses BLE to sync 
its sensor data with the corresponding mobile application on 
the smartphone. They observed that the Fitbit tracker keeps 
advertising its custom characteristics even when it is already 
paired, and do not follow the BLE guidelines to use dynamic 
device address. Then they used GattTool to connect to the 
paired Fitbit tracker, keeping it too busy to sync its sensor 
data with the paired device by continually asking its charac-
teristics. They also launched a similar attack on an unpaired 
Fitbit tracker and prevented legitimate devices from pairing 
with the tracker.

2) Effects of Compromised Availability
It is straightforward that user experience will be disrupted 

when a DDoS attack occurs. When a service provider becomes 
the target of a DDoS attack, it may not be able to distinguish 
normal user requests from malicious DDoS requests. As mali-
cious traffic exceeds the service provider’s maximum load, nor-
mal user requests will not be handled by the paralyzed service 
provider as expected, leading to the damage of user experience.

From the perspective of service providers, compromised 
availability may do harm to their profits, since consumers may 
turn to other service providers for a better user experience. 
Besides, it will increase the cost of providing services, since 
more resources are required to provide high-quality services 
to benign users while serving undetected malicious requests at 
the same time. According to a recent report [131], about 5% 
of monthly gaming-related traffic is due to DDoS attacks. This 
proportion can get as high as 30% when a DDoS attack is be-
ing performed, greatly increasing the operating costs of gaming 
service providers. Although wearable devices may occupy only 
a small proportion of bots today, it is still very important to 
keep our eye on wearable-based DDoS considering the poten-
tial popularity of more powerful wearables in the future.

3) Possible Solutions
Since DDoS attacks involve a large collection of compro-

mised “bots,” we need to capture enough real-world attacks for 
a better understanding of the characteristics of DDoS attacks 
(e.g., the most frequently used methods to turn IoT devices into 
“bots”) before adopting preventive measures. Dang et al. [114]
deployed the HoneyCloud system consisting of hundreds of IoT 
honeypots, i.e., “security resource whose value lies in being 
probed, attacked, or compromised,” [132] across the world for a 
whole year to capture real-world IoT attacks. HoneyCloud con-
sists of both hardware IoT honeypots and cloud-based virtual 
honeypots. After recording and analyzing 264 million suspicious 
connections and 28 million effective attacks, they concluded 
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that a typical attack against IoT devices consists of three suc-
cessive phases – intrusion, infection, and typical monetization. 
In the intrusion phase, most attackers launch a brute-force dic-
tionary attack, while few choose to exploit security flaws to 
bypass the authentication mechanism instead. Only after fin-
ishing the intrusion phase successfully can attackers control 
the compromised device and launch various follow-up attacks 
including denial-of-service, Telnet/SSH scan, etc. From the find-
ings of HoneyCloud, we argue that developers should enhance 
wearables’ authentication mechanism to prevent them from be-
ing turned into “bots.”

As for service providers, per-packet DDoS detection [111]
and statistics-based DDoS detection [110] should be exploited 
to defend against DDoS attacks. For zero-day vulnerabilities, 
static code analysis [112] and firmware-based memory check-
ing [113] can be utilized to identify them.

To avoid interference on the communication link exploiting 
static BLE address, we advise paying more attention to system 
security and follow the security guidelines of related protocols.

4. Future research directions

To make wearable devices benefit more from edge computing, 
there are some research directions worth exploring. Here we list 
four potential research directions, each of which corresponds to 
one of the four research issues discussed in Fig. 2.

4.1. Adapting scheduling schemes to usage scenarios of wearables

Existing works related to scheduling in edge computing tend 
to assume simple scenarios and ignore many realistic factors, e.g.,
coexistence of offloaded data and conventional data, hierarchi-
cal placement of edge gateways, real-time variations of available 
edge computing resources, evaluation in real networks, etc, which 
could lead to sub-optimal offloading decisions in actual use [22]. 
This problem could be further exacerbated in edge computing for 
wearable technology due to several reasons. First, many works do 
not consider user mobility when designing scheduling schemes, 
which is an unavoidable problem with wearables moving with 
users. User mobility could cause fluctuation of the network condi-
tion, which may affect the benefit of different scheduling schemes. 
In some cases, handoffs, i.e., the processes of migrating offloaded 
tasks from one edge gateway to another, could occur with mov-
ing users. The handoff process could not only affect the network 
condition and available resources provided by edge gateways but 
also incur a high handoff delay. New technologies are desired to 
tackle all these challenges caused by user mobility. For example, 
pre-migration techniques based on user mobility prediction could 
be adopted to alleviate the effect of the handoff delay. Second,
different wearable applications on a single wearable device may 
rely on the same sensor data, e.g., both fall detection and activ-
ity recognition may require data collected by the accelerometer 
sensor. Existing scheduling schemes designed for a single applica-
tion simply instruct these correlative applications to offload tasks 
separately, ignoring that the same information may be transferred 
to edge gateways by these applications repeatedly. Such strategies 
could waste network bandwidth and extend the overall transmis-
sion delay. Nevertheless, scheduling these applications in a unified 
manner faces several challenges: (a) different applications may do 
different local preprocessing on the same raw data before trans-
ferring it to edge gateways; and (b) each application may only 
transfer data challenging to process for this specific application. 
More research efforts are required to tackle these challenges.

Besides, edge computing for wearable technology differs from 
other kinds of edge computing systems in many aspects. Unlike 
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other less constrained mobile devices, most COTS wearable de-
vices now only support the short-range Bluetooth protocol and 
mainly rely on powerful private edge gateways rather than pub-
lic edge servers. By exploiting the unique features of private edge 
gateways compared to public edge servers, and the characteris-
tics of those communication protocols widely adopted by wear-
ables, researchers could further optimize scheduling schemes for 
wearables-oriented edge computing. Examples include the afore-
mentioned CATO mechanism [46] optimized for the ARM big.LIT-
TLE architecture which is popular in modern smartphones, and the 
WearDrive system [17] combining BLE and WiFi-Direct for energy 
saving.

4.2. Enhancing personalization of wearable applications

Many wearable applications use machine learning models to ex-
tract high-level information from sensed raw data. Since different 
users have different characteristics in their physiological signals, 
the optimal model parameters for different users may differ. There-
fore, the common strategy of using the same model for all users 
may not achieve the best accuracy for each user. Personalized 
models are desired by wearable applications to provide services 
with higher quality.

Recent works [133,134] focus on personalization. Despite their 
excellent performance, all these works solicit some labels from 
users, which however limits the usage of these personalization 
techniques in usage scenarios that lack enough labeled data. For 
example, this problem could become very severe for wearable ap-
plications predicting the seizure of fatal diseases [10,61] for two 
reasons. First, since the number of seizures for an individual user 
is typically very limited, only insufficient data could be provided to 
existing supervised or semi-supervised personalization techniques, 
which could degrade the performance of these methods. Second,
since the accuracies of such applications can have a great impact 
on users’ safety, personalization techniques are desired to achieve 
higher accuracy. In summary, it is necessary to propose new per-
sonalization techniques that can work well for applications that 
lack sufficient labeled data from the individual user.

4.3. Improving emerging energy sources for wearables

Orthogonal to optimizing wearables’ energy consumption, ex-
ploiting diverse energy sources for wearables is another promising 
way to extend the battery life of wearables. There are typically 
three energy sources for wearables.

• First, users can carry a charger with them, and they need 
to find a socket whenever they want to charge their wear-
ables. This common method is unquestionably inconvenient 
for users.

• Second, some high-end edge gateways now support reverse 
wireless charging, i.e., they can charge other electronic devices, 
including wearables that support wireless charging [135,136]. 
This method has the drawbacks of low energy conversion effi-
ciency (e.g., a full charge for the Samsung Galaxy Watch Active 
(230 mAh) could gobble 29% of the Galaxy S10e battery (3100 
mAh) [137]), low charging speed (e.g., the power of reverse 
wireless charging provided by many high-end smartphones is 
typically less than 5W [138]), and the need for extra compo-
nents (e.g., the inductive coil, the controller of the coil [135]) 
in compact wearables.

• Third, energy harvesting technologies can be exploited to col-
lect power from the ambient environment. There exist various 
sources of energy that could be harvested by wearables, in-
cluding thermal energy [139], kinetic energy [68,69,82], solar 
energy [140], RF energy [141], etc. The drawback of energy 
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harvesting technologies is that the harvested energy could be 
unstable (e.g., the solar power, a common source of wearable 
energy harvesting, could be 100 times slower on a cloudy day 
than on a sunny day) and weak (typically in the order of a few 
μW to mW) [142].

We think that more works need to be done to overcome the 
latter two energy sources’ drawbacks.

4.4. Promoting non-cryptographic security techniques for wearables

Security mechanisms based on cryptography may incur a great 
overhead on resource-limited wearables. Non-cryptographic secu-
rity techniques are desired to reduce such overhead as well as 
maintain security. We have discussed some non-cryptographic se-
curity techniques in Section 3.4, including novel authentication 
credentials, jamming techniques, etc. Nevertheless, despite their 
applicability to wearables, in theory, they may not be practical in 
today’s COTS wearables for several reasons.

First, as Zeng et al. [103] have pointed out, per-device authen-
tication credentials are limited by the “tradeoff between the de-
tection rate and false alarm rate.” Besides, channel/location-based 
fingerprinting, which is superior in terms of uniqueness, adaptive-
ness, and mimicking resistance, may not apply well to wearables, 
since user mobility could greatly change channel/location-based 
characteristics.

Second, existing per-person authentication credentials are mainly 
designed for those more powerful mobile devices rather than 
resource-limited wearables. Some of them require specialized sen-
sors, limiting their usage in compact wearables. For example, 
fingerprint-based authentication [99] requires onboard fingerprint 
scanners. And face recognition-based authentication [100] requires 
onboard cameras to capture face images. We think more practical 
per-person authentication credentials should be further considered 
to achieve authentication on wearables.

Third, jamming techniques, which eliminate the need of en-
crypting every message after pairing, still have some severe draw-
backs. For example, Ally Friendly Jamming, which is introduced in 
Section 3.4.1, could not resist adversarial jammers.

In summary, despite the advantage of lower computation com-
plexity, existing non-cryptographic security techniques still have 
some problems that need to be solved. Some drawbacks are de-
rived from the methods themselves, while others are caused by 
resource limitations of wearables, e.g., per-person credentials are 
mainly designed for more powerful mobile devices rather than 
wearables. We call on researchers to aim more research efforts to-
wards promoting non-cryptographic security techniques that are 
suitable to wearables.

5. Conclusion

Wearable devices are gaining popularity in the market with 
their distinctive ability to sense and interact with the human body 
directly. Nevertheless, they typically have only limited local re-
sources due to the constraints on size and weight. As an emerging 
computing model, edge computing has a great potential to en-
hance wearable devices by providing sufficient resources to wear-
ables with little transmission delay.

Considering the key role of edge computing in next-generation 
wearable technology, we conduct a comprehensive survey of re-
cent works on edge computing for wearable technology. We group 
the surveyed works into four research issues, i.e., scheduling, in-
formation perception, power saving, and security. After investi-
gating existing works, we propose several open research issues 
in edge computing for wearable technology, including wearable-
oriented scheduling, personalization, emerging energy sources, and 
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non-cryptographic security techniques. In summary, this article 
provides a detailed reference for wearable device manufacturers 
and researchers on how to maximize the practical values and al-
leviate security issues of edge computing for wearable technol-
ogy.
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