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Abstract—Low-power wireless networks are widely used to
monitor crop growth in smart agriculture. However, there is a
growing need for more fine-grained monitoring to improve the
yield of certain fruits and vegetables. The system must maintain
low power consumption of peripheral devices while still providing
a satisfactory quality of experience (QoE) for more frequent
queries. Conventional fixed-time communication between central
and peripheral devices fails to offer a well-rounded solution to
this trade-off problem. To achieve a better balance, we propose an
LSTM-driven transmission scheduling method. By learning the
user’s past query patterns, the LSTM predicts the time of future
queries initiated by the users, allowing the system to plan data
transmission between the central and peripheral nodes ahead of
time. Our method also predicts the future pattern of collected
data to ensure that significant changes are actively recorded, even
if not queried. Compared to other machine learning methods, our
LSTM prediction results have a smaller error. The simulation
results demonstrate that our approach can greatly improve QoE
while achieving lower power consumption.

Index Terms—Low-power WSNs, LSTM, Smart Agriculture,
IoT

I. INTRODUCTION

The use of low-power wireless sensor networks (LPWSN5s)
in smart agriculture has grown in popularity for improving
farm production and efficiency. LPWSNs consist of small,
low-cost sensors that measure environmental variables like
temperature, humidity, soil moisture, and light intensity. They
find applications in precision irrigation, crop monitoring, and
pest management. LPWSNs enable real-time data on crop
growth, allowing farmers to optimize conditions by adjusting
soil moisture and fertilizer application rates. LPWSN usage is
expected to further increase with evolving technology [1].

Implementing detailed monitoring in agriculture is essen-
tial for enhancing the yield and quality of popular fruits
and vegetables. For perishable crops like strawberries and
tomatoes, picking them at the right moment is crucial for
retaining their quality. Current reliance on subjective expe-
rience for gauging plant growth introduces errors in processes
like pollination, spraying, harvesting, and marketing. How-
ever, advanced monitoring of environmental factors such as
temperature and humidity can provide valuable insights for
nurturing and harvesting these crops, optimizing their growing
conditions, and increasing production [2, 3]. Precise and real-
time monitoring of crops and their growing conditions is thus
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Fig. 1. Example of an LPWSN system that monitors environmental factors
for crop growth.

essential for ensuring better yields and quality. Fine-grained
monitoring allows farmers to achieve improved production
outcomes and optimize their farming processes.

Figure 1 illustrates a typical crop monitoring scenario.
Sensors for monitoring temperature and humidity are placed
in fields or greenhouses and wirelessly connected to a central
device. These sensors collect and transmit data regularly.
Farmers can remotely access the data stored on the central
device through a mobile app to monitor crop growth. Key
characteristics of this scenario include:

o Low power consumption: Peripheral devices are battery-
powered to eliminate the need for cables, requiring low
power consumption to minimize battery replacements.

¢ Good Quality of Experience (QoE): Users expect up-to-
date data when accessing the central device, necessitating
a superior QoE to minimize the time difference between
data collection and user query.

o Differentiated user query patterns: As sensors are
installed for various crops and needs, user query patterns
towards specific sensor data may vary and lack a distinct
pattern.

One of the main challenges of optimizing a device’s per-
formance is balancing power consumption and QoE. For
optimal QoE, peripheral devices must transmit data to the
central device in real-time, which significantly increases power
consumption. However, reducing the frequency of commu-
nication between peripheral and central devices to lower
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power consumption can negatively impact QoE. In a simplistic
setup where peripheral devices send data at fixed intervals,
achieving a balance between low power and high QoE can be
difficult. Differentiated user query patterns further complicate
this issue, as fixed time communication may not meet the QoE
requirements for all query patterns.

This paper proposes a method to optimize transmission
scheduling by accurately predicting user query patterns for
different peripheral devices based on past queries. The central
device can then use these predictions to schedule data trans-
missions effectively.Machine learning algorithms, specifically
LSTM, are integrated into the central device for improved
prediction accuracy in complex time series.

Our paper contributes by optimizing transmission schedul-
ing of peripheral nodes using LSTM, achieving a balance
between low power consumption and good QoE. By modeling
past user queries to predict future queries, the central device
can schedule data transmission with peripheral devices, mak-
ing it suitable for fine-grained crop monitoring scenarios.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the system de-
sign, including the overall design, implementation and model
selection. The simulation results of our proposed methods is
shown in Section IV. Section V concludes the paper.

II. RELATED WORK

A. Network Scheduling Optimization Methods based on Ma-
chine Learning

Machine learning has provided feasible solutions to the
problem of network scheduling optimization and has been
extensively studied in recent years.

ARIMA model is a widely applied statistical model that is
suitable for predicting stationary time series data. Its good
interpretability makes it one of the most commonly used
machine learning methods in tasks such as modeling and
predicting wireless network traffic [4, 5]. However, ARIMA’s
limitation is that many real-life time series data is generated by
more complex processes, which does not meet the assumptions
of the ARIMA model, and leads to unsatisfactory performance.

Random forest is an ensemble learning method that com-
bines multiple decision trees for prediction. The main advan-
tages of random forest are its robustness, interpretability, and
good performance in handling large datasets [6]. In Wang et al.
[7], random forest regression algorithm was used to accurately
predict the arrival time of wireless network traffic, which had
a much better performance than linear models.

LSTM neural networks, known for capturing long-term
dependencies [8], are suitable for processing sequential data
and applied in various time series prediction tasks. Stud-
ies [9, 10] demonstrate that LSTM and other recurrent neural
networks outperform statistical learning methods like ARIMA
in network traffic prediction. Rostami et al. [11] utilize an
LSTM-based framework to predict arrival time of data packets
and dynamically adjust wake-up signal scheduling. However,
overfitting may occur with LSTM and other deep neural
networks when training data is limited [12], requiring longer

training time and more computing resources compared to
statistical learning methods.

Hybrid models are commonly used to combine the strengths
of different machine learning methods and effectively reduce
prediction errors. Madan and Mangipudi [13] proposed a
network traffic prediction method using Discrete Wavelet
Transform (DWT), ARIMA, and RNN. First, DWT decom-
poses the data into nonlinear and linear components, which
are then separately predicted using ARIMA and RNN. Yang
et al. [14] developed a hybrid model based on ARIMA and
Back Propagation Neural Network, optimized with Simulated
Annealing (SA). However, if a specific predictor performs
poorly, it can become the bottleneck of the hybrid model,
significantly limiting overall performance.

B. Wireless Sensor Network Applications in Smart Agriculture

As an effective solution for smart agriculture, various
wireless network applications have been proposed for remote
monitoring of various environmental parameters and providing
data to improve crop yields, reduce input costs, and enhance
agriculture productivity.

Many works focus on developing and evaluating WSNs for
specific agriculture applications. Diedrichs et al. [15] presents
a WSN for frost detection in precision agriculture, while Heble
et al. [16] presents a low-cost, low-power IoT network for
soil moisture monitoring. Ghanshala et al. [17] proposes a
wireless monitoring system in precision agriculture, which
focuses on the hardware and software aspects of the system,
including energy-saving algorithms and networking protocols.
These papers all demonstrate the effectiveness of the WSNs in
their respective applications and evaluate them against state-
of-the-art designs.

There are also works that emphasize the construction of a
more generalized platform that supports IoT devices for smart
agriculture. Vasisht et al. [18] presents FarmBeats, an IoT
platform designed specifically for agriculture. The platform
enables data collection from various sensors, cameras and
drones, and is designed to account for power and internet
outages. Olivares-Rojas et al. [19] proposes an architecture
based on distributed edge-fog-cloud computing to achieve
more efficient measurement, processing, and forecasting for
agricultural applications, which can provide more intelligent
measurement and data processing to help decision-making.

III. METHODOLOGY
A. Overall Design

In order to optimize the transmission scheduling of low-
power network nodes and solve the trade-off problem between
low-power consumption and good QoE, a feasible approach is
to predict when the user end will initiate the query. Based
on this idea, this study proposes an overall design as shown
in Fig. 2. Since the central device both interacts with the user
end and communicates with peripheral devices, it has the most
comprehensive information and controls the entire network.
Therefore, this paper proposes to incorporate a predictor into
the central device, which learns the query patterns of past users
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Fig. 2. The overall design.

through machine learning methods to make more accurate
predictions.

Specifically, when the user initiates a query to the central
device, the central device saves the query history for each
peripheral device while returning data. The central device
trains a query predictor for each peripheral device’s query
record. Besides, a data trend predictor is trained for each
peripheral device based on the collected data, which predicts
the future pattern of the data. This predictor serves as a
supplement for the scheduling process, if significant changes is
predicted, then the central device will also collect data from the
peripheral devices, so that these changes can be actively logged
even if not being queried. As data updates, the predictors will
also train on the new data regularly to adjust the parameters.
The results of the two predictors are combined to provide the
scheduled transmission time within a future time window and
the next data transmission time is sent to the peripheral device.
The peripheral device has a timer and sends data to the central
device at the scheduled time. In this way, the peripheral device
does not need to consume additional energy to send or receive
data when there is no communication demand.

To conclude, the query predictor and data trend predictor
work together to determine the optimal transmission time for
each peripheral device within a future time window. This
means that the central device can predict when the user end
will initiate a query or when the monitored data will experi-
ence drastic changes, and proactively collect the necessary data
from the peripheral devices before the actual query is made.
However, incorrect predictions can have negative effects, such
as delays in data transmission and reduced QoE. To mitigate
this, continuous training and adjustment of predictors based on
new data are necessary. Regular updates ensure adaptability to
evolving query patterns and data trends, maintaining the effec-
tiveness of the proactive data provision approach. Section IV
also validates the proposed design’s ability to perform well
despite possible errors.

B. Dataset and Model Training

This study uses real smartphone application usage data to
simulate user end query records to train and test the query
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following the observations, and h; represents the output of the LSTM layers.
Dashed lines represent the LSTM units not shown in the diagram.)

predictor. The app usage dataset used in this study is the open-
source dataset collected by Yu et al. [20]. This data set contains
usage records of more than 10,000 different applications from
over 6 million different devices which were collected in one
week. To ensure that the amount of data used for training
is sufficient and the usage pattern meets the agricultural
application scenario, our study selects usage records with a
usage count greater than 1,200 and an average usage interval
greater than 450 seconds in the dataset, and splits longer
records into lengths of 1,200 to simulate a limited memory.
Finally, 34 records with a length of 1,200 are selected for this
study. Two open-source garden soil moisture datasets[21, 22]
are used to train and test the data trend predictor. Both datasets
contain data collected by different sensors and the data was
logged every 15 minutes. Similarly, the data are segmented
into a fixed length of 1,200. The dataset was split into 37
pieces of data. For each piece of data, our study uses the first
1000 entries for training and validation of the predictor, and
the remaining 200 entries for testing the actual performance.

As shown in Fig. 3, a stacked LSTM neural network
architecture is proposed as a predictor. Multiple LSTM units
are connected to form an LSTM layer of the network. A fully
connected layer is added between each LSTM layer to improve
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TABLE I
LSTM TRAINING HYPERPARAMETERS

Parameter Value
LSTM hidden states 128
LSTM layers 2
Dropout probability 0.2
Optimization algorithm  Adam
Initial learning rate 0.001
Number of epochs 150

prediction accuracy, and dropout is used for regularization. The
output of the LSTM layers is fed into a fully-connected layer
to obtain the final output of the predictor. The ReL.U function
is used as the activation function, and Mean Absolute Error
(MAE) is used as the loss function. The length of the input
and output sequences p corresponds to the prediction window
length. The hyperparameters selected for the LSTM predictor
training are shown in Table I. Standardization is applied to
training data to improve the performance of machine learning
methods.

To further evaluate the performance of the LSTM predic-
tor, we conducted a comparative study using other machine
learning methods introduced in Section II, including ARIMA,
Random Forest, and the ARIMA-RNN hybrid model proposed
by Madan and Mangipudi [13]. Furthermore, linear regression
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TABLE II

RNN TRAINING HYPERPARAMETERS
Parameter Value
RNN hidden states 128
RNN layers 2
Dropout probability 0.2
Optimization algorithm  Adam
Initial learning rate 0.001
Number of epochs 75

was used as a naive baseline. When training the ARIMA
model, the stepwise algorithm proposed by Hyndman and
Khandakar [23] was used to automatically search for the
optimal parameters. The hyperparameters used for training
RNN and Random Forest in this study are shown in Table
IT and Table III, respectively.

C. Model Selection

For each prediction method implemented in section III.B,
we use the first 1000 entries of the data for training, and let the
trained predictors to predict the next 200 entries. We compare
the predicted results and actual observations to calculate their
MAE. The MAE of different models are shown in Fig. 4. It can
be seen that for both future query prediction and future data
trend prediction, the MAE of LSTM is significantly smaller
than that of all other prediction methods. The MAE of the
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TABLE III
RANDOM FOREST TRAINING HYPERPARAMETERS
Parameter Value
Number of predictors 1000
Maximum depth 20

ARIMA model and the ARIMA+RNN hybrid model is also
smaller than the naive baseline (i.e., linear regression), but
the MAE of the hybrid model does not show improvement
than that of the ARIMA model due to the limitations of the
ARIMA model itself. Random Forest performs poorly, and its
MAE is not smaller than that of linear regression. Fig. 4(c)
and Fig. 4(d) shows a single case of the prediction results of
LSTM, which are very close to the real data, confirming the
previous evaluation results.

Based on the above results, we propose to use LSTM
architecture for both predictors. From Fig. 4(c), it can be seen
that the initial output of the LSTM query predictor contain a
large amount of jitter, while the sequence of the next query
times must be a monotonically increasing sequence. Therefore,
it is necessary to further process the prediction results. In
this study, we chose to use a Savitzky-Golay filter to smooth
the preliminary output of the LSTM query predictor, and the
filtered effect is also shown in Fig. 4(c).

IV. EVALUATION
A. Overview

In this section, software simulations were conducted un-
der the assumption of an ideal state where there are no
retransmissions in the data link layer to evaluate LSTM-
driven transmission scheduling of energy-efficient network
nodes through numerical results.

In Section IV-C and Section IV-B, we present the simulated
performance of the query predictor and the data trend predic-
tor, respectively. In this simulation experiment, the ARIMA
model predictor and the ARIMA+RNN hybrid model predictor
implemented in Section III were used as control groups
against the LSTM predictor. These two prediction methods
have been proven to have significant accuracy improvements
compared to the naive baseline in the evaluation results shown
in Fig. 4(a) and Fig. 4(b). The unused portion of the datasets
from Section III-B is used as the test data for the simulation
experiment. In the experiment, the simulation duration of the
three predictors was controlled to be the same.

After evaluating the performance of the two prediction tasks,
respectively, we combine the output of two predictors together
to simulate the final scheduling process shown in Fig. 2. The
results are presented in Section IV-D. We show that compared
to fixed-time data transmission that is used in most crop
monitoring LPWSNs, LSTM-driven scheduling is an energy-
efficient solution with better QoE.

B. Simulated Performance for Future Query Prediction

The query predictor is the crucial part of the system, which
provides the basis of future transmission scheduling. The
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performance of the query predictor is mainly evaluated from
two aspects: QoE and energy consumption.

To evaluate the QoE of the system, this study calculates the
difference between the moment when the user initiates a query
(i.e., present) and when the central device last collected data
from the peripheral device (i.e., past). This time difference
indicates how long the data collected by the central device lag
behind the queried moment. The smaller the time difference,
the closer the system is to the ideal real-time system, and
the higher the QoE. This time difference is calculated by
finding the nearest scheduled data transmission time before the
query time in the central device’s outputs and computing the
difference between the query time. The comparison between
LSTM and other predictors in terms of QoE is shown in
Table IV. As the data do not follow a normal distribution, the
Mann-Whitney U test is used to compare the medians. Results
show that LSTM-driven predictions can achieve significantly
smaller time difference, indicating a better QoE compared with
other models.

Based on simulation, this study only provides a rough
characterization of the energy consumption of different pre-
diction methods: since the main source of energy consumption
of peripheral devices comes from communication with the
central device, the energy consumption of different predic-
tion methods can be indirectly evaluated by comparing the
number of data transmissions on peripheral devices during
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TABLE IV
QOE: TIME DIFFERENCE BETWEEN QUERY TIME AND LATEST DATA
UPDATE
Predictors Median (s) | Mann-Whitney U test
LSTM 170.0 U = 8076540.0
ARIMA 222.0 p < 0.001 (*#%*)
LSTM 170.0 U = 8245715.0
ARIMA+RNN 222.0 p < 0.001 (*%#%*)

the simulation process. The boxplot in Fig. 5 shows the
number of transmissions for each simulation, where LSTM
has fewer transmissions on average and median compared to
ARIMA and hybrid models. This indicates that the LSTM-
driven communication scheduling, which accurately predicts
future query time, reduces unnecessary communications while
improving QoE and maintaining lower energy consumption.

C. Simulated Performance for Future Data Prediction

As introduced in Section III-A, by predicting the pattern
of future data collected by peripheral devices, the data trend
predictor can aid the scheduling process by initiating data
transmission when significant changes in humidity, temper-
ature, etc. are expected. In this way, users will be notified of
these changes in their mobile apps instantly.

In monitoring soil humidity, data transmission is initiated
by the data trend predictor when a predicted humidity change
greater than 1% is expected in the future. The collected data
points are connected using linear interpolation to create a
continuous curve. To minimize unnecessary transmissions, the
data trend predictor aims to minimize the error between the
interpolated curve and the ground truth. We use MAE and
RMSE as error metrics, and compare the performance of
LSTM, ARIMA, and hybrid models. The results, shown in
Fig. 6, highlight the superior performance of LSTM in terms
of smaller MAE and RMSE, indicating its better ability to
predict data trends.

D. Simulated Performance of LSTM-Driven Scheduling

In this part, we compare our scheduling solution against
the current fixed-time data transmission protocol used in the
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(a) Empirical CDF of MAPE. (b) A sample of scheduled data collection.

TABLE V
PERFORMANCE COMPARISON BETWEEN SCHEDULED AND FIXED-TIME
TRANSMISSIONS
Metric Median | Mann-Whitney U test
QoE: Time Scheduled 307.0 s U = 9672705.5
difference Fixed-time | 436.0 s p < 0.001 (*%#%*)
Energy: Num. of | Scheduled 75 U =418.0
transmissions Fixed-time 76 p=0.975

soil moisture datasets[21, 22], which transmits data from
peripheral devices to the central device every 15 minutes. We
pair the app usage data with the soil humidity data to form 29
sets of data that simulate a complete application scenario.

We evaluate the QoE and energy consumption of two
systems using metrics defined in Section IV-B. The results
in Table V show that LSTM-driven scheduling improves the
time difference between query time and latest data update
from 436.0 s to 307.0 s. This improvement is statistically
significant under Mann-Whitney U test. Moreover, the energy
consumption does not increase, indicating that our solution
maintains the low-power characteristics of peripheral devices.

Finally, to validate that the sensor data collected under
our scheduling scheme can fully reflect the ground truth, we
compute the mean absolute percentage error (MAPE) between
the linear interpolated curve and the ground truth. The MAPE’s
empirical cumulative distribution function (eCDF) is depicted
in Fig. 7(a), revealing that over 90% of cases have a MAPE
below 0.5% and the maximum MAPE is less than 3%. Fig. 7
shows a sample of data points collected using the proposed
scheduling method, illustrating a strong resemblance to the
ground truth. This further confirms the feasibility of LSTM-
driven scheduling.

V. CONCLUSION

This paper highlights the trade-off problem regarding the
quality of experience (QoE) and energy consumption in
agricultural LPWSNs for crop monitoring, which requires
a finer granularity. To address this issue, we propose an
LSTM-driven scheduling method. Compared to other machine
learning prediction methods, LSTM has a smaller margin of

46



2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

error. Simulation experiments demonstrate that the LSTM-
driven scheduling method can significantly enhance QoE while
reducing energy consumption compared to typical prediction
methods such as ARIMA. It demonstrates a higher level
of accuracy in forecasting future data collection patterns.
Compared to current fixed-time data transmission solutions,
our method can substantially improve QoE, precisely reflect
trends in sensor data, and also maintain approximate power
consumption.
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